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Abstract
Farmers may adapt to climate change by substituting away from the crops most severely
affected. In this paper we estimate the substitution caused by a moderate change in climate
in the US Midwest. We pair a 10-year panel of satellite-based crop coverage with spatially
explicit soil data and a fine-scale weather data set. Combining a proportion type model with
local regressions, we simultaneously address the econometric issues of proportion dependent
variables and spatial correlation of unobserved factors. We find the change in expected crop
coverage and then we link those changes to the expected changes from an estimated climate
dependent yield equation. Ceteris paribus, we find that climate induced changes in yield are
offset by land coverage changes for rice and cotton but they are strongly amplified for corn
and soy.
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1 Introduction

Crop yields per acre (hereafter yield) for corn and soybeans in the US are forecasted to
decrease by 30–46% before the end of the century, even under the slowest (B1) climate
warming scenario (Schlenker and Roberts 2009). There are similar findings in Africa (Lobell
et al. 2011) and China (Chen et al. 2016). In addition to the yield effect, there is also a crop
coverage response to climate change. Crop coverage is the area of land used to produce a
given crop in a given year. Farmers may grow crops that are better suited to the new weather
conditions. That is, they increase or decrease the amount of land devoted to a particular crop.
The coverage response effect may offset or reinforce the yield effect on crop production.
Since farmers’ adaptation behavior is an important factor that affects crop production, in this
paper, we study both crop yield and crop coverage in light of both weather and soil conditions
along the Mississippi-Missouri river system, in order to project climate-related changes in
crop production. This paper is the first to forecast the land coverage effects of projected
climate change.1

The dominant crop types along the Mississippi River are corn, soy, cotton and rice in
the south and corn and soy in the colder north. Farmers grow crops with characteristics
matching the landscape characteristics. As evidence, one sees cotton in the warmer, wetter
south, wheat in drier regions, corn in the wetter parts of the Midwest, and so on. Based on
temperature alone, coverage response to higher temperatures should result in the northward
spread of cotton and rice, substitution of shorter-season crops (e.g., soy) for longer-season
crops (e.g., corn), and the conversion of non-crop land in the south. However, soil properties
are also a major determinant of which crops can be grown and the crop’s ultimate yield. If
all crops suitable to local soils are negatively affected by warming, it is possible that farmers
are left with no better alternative crop, not considering new technology or new crops being
introduced into the region. That is, adaptation happens only when the substitution crop fits
in the local soils and the current crop is harmed so much that it is less profitable than the
substitution crop. We estimate the changes in crop coverage within the limits imposed by
soil conditions.

Modern econometric studies of crop coverage began with Nerlove’s (1956) examination
of crop share response to crop prices. His estimating equations are of the form that coverage
is a function of lagged coverage, crop price, input prices and other variables. There is a large
literature elaborating on this basic model, but it mostly focuses on the effect of price, cost,
or risk of growing crops rather than changes in climate.

Themajor contribution of this paper is to project land use change on a 4 km square basis as
a function of changes in climate. The other contributions of this paper are the methodological
innovations, elaborated as follows. (1) We use a limited dependent variable regression with a
ratio transformation function to simultaneously deal with the problems of that crop coverages
are proportions and that our crop coverage data have many data points with zero coverage.
There are previous researchers (Lichtenberg 1989; Wu and Segerson 1995) who use discrete
choice models for crop share decisions. Berry’s logit (1994) is an appealing discrete choice
model for shares that are not zero or one, because it is linear in the parameters and errors.
However, Berry’s logit is not suitable for the data that have many zero data points as is the
case in land use models over a large landscape. The model design in this paper satisfies the
constraint of proportion dependent variable, has the advantage of linearity in parameters,

1 Burke and Emerick (2016) show that long run and short run responses to temperature change have been
very similar, so that adaptation mitigated less than half of the change. Hornbeck (2012) examines the land use
adjustments to the Dust Bowl.
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and is good for the data with many zero points. (2) We use a local regression framework to
address the problem of that land use may be correlated across space. A spatial error estimator
can address the spatial correlation problem, but is not consistent in nonlinear regressions, like
the limited dependent variable regression we use in this paper. The key problem is that the
homoscedasticity assumption is violated by the spatial correlation in errors. Therefore, we
use a local regression framework so that all parameters and the variances can vary across the
landscape and account for unmeasured place specific phenomenon that would lead to spatial
correlation. (3) We include the interaction terms of moisture and heat to address the fact
that a dry warming is likely to be more harmful than warming with moisture. (4) Utilizing
the fine-level panel data on weather and soil, we explicitly model the effects of weather and
soil. Modeling the effect of weather is key for simulating the effects of climate change; and
modeling the effect of soil allows us to estimate the changes in crop coverage within the
limits imposed by soil conditions. In contrast, studies interested in price response use place
fixed effects to account for these factors and so cannot shed light on the role of soil in climate
change adaptation. (5) Since our focus is on climate, not on price, we can use year fixed
effects to account for both price and non-price incentives to grow crops. In many countries
(e.g., the United States and European Union), the incentive to grow crops in addition to the
price is government payments. As these programs change year to year and have different
marginal effects for different farmers, it is not possible to have a fully satisfactory treatment
of the price variable. If the focus, as wasNerlove’s focus, is on price response, parsing the true
incentive effects is a serious problem. However, since our focus is on climate, we use year
fixed effects to account for both prices and government programs. The year fixed effects also
would account for differences in input prices and any effects of variables that are common
across space. For instance, the American biofuels program is also subsumed in the year fixed
effects. In addition, many researchers (Just 1974; Chavas and Holt 1990; Lin and Dismukes
2007) think that the risk of growing a crop, perhaps the variance or lower semi-variance, is
an important determinant of crop choices. Given that the risk of growing a crop can be taken
as constant, which is a good approximation in a short time series, we use crop fixed effects
to account for this factor.

As for estimating the effect of climate change on crop yield, recent literature, particularly
Schlenker andRoberts (2009), worked at the county level and quantified the effects ofweather
on yield. The general tenor of their results is that high temperatures are very harmful to yields
and so climate change projections for theUnited States result in large yield deficits in response
to an increase in the number of hours of 29 °C plus temperatures for corn, 30 °C for soybeans,
and 32 °C for cotton. Lobell et al. (2011) and Chen et al. (2016) did a similar analysis for
Africa and China, respectively. These studies find that warmer climates negatively affect
crop yield. Their work is noteworthy for the use of a great deal of spatial and temporal
detail in their weather data, while the effects of soil are subsumed in the place fixed effects.
Utilizing a much finer level of data and also a great deal of spatial and temporal detail in both
weather and soil data, we explicitly model the effects of both weather and soil in the yield
regression. It allows us to predict the crop yield losses to climate change, within the limits
of soil conditions.

In this paper, we estimate the coverage response of corn, soy, cotton and rice to two climate
change scenarios. We also estimate the change in yields implied by these same scenarios to
see whether yield change and coverage change offset or reinforce each other. Like Schlenker
and Roberts (2009), we find reductions in yield due to climate change. For corn and soybean,
we find that coverage is also reduced; this exacerbates the yield loss and shifts the supply
curves of corn and soybean further inward. For rice and cotton, we instead find increases in
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coverage; this compensates for yield loss and shifts the supply curves of rice and cotton back
toward its original position.

The remainder of the paper is organized as follows. Section 2 summarizes the data on
land use, soil conditions, weather, climate change scenarios, and crop yields for the states
along the Mississippi-Missouri river corridor. Section 3 establishes the econometric system
and presents the estimation results. Section 4 simulates crop coverage responses to climate
change. Both Sects. 5 and 6 predicts crop production losses to climate change. Section 5
holds crop coverage fixed, while Sect. 6 considers both yield effect and coverage response.
Section 7 concludes.

2 Data

Both yield and crop coverage are estimated as functions of weather, soil, and time trends
or time fixed effects. Data on land cover, soil characteristics, weather, and climate change
scenarios arematched on a 4 kmby 4 kmgrid to create the primary data set. Data on crop yield
are at the county level. The states included in the analysis are those along the Mississippi-
Missouri river corridor for which there are at least 10 years of land cover data: Wisconsin,
Iowa, Illinois, part of Missouri, Arkansas, and Mississippi.2 Given that corn and soy are
mainly grown in the three northern states (Wisconsin, Iowa, and Illinois), and rice and cotton
are mainly grown in the southern states (Missouri, Arkansas, and Mississippi), the six states
are divided into the groups of north and south accordingly. The summary statistics of all the
variables for the two groups are presented in Table 1.

2.1 Crop Coverage

Land cover data is derived from the Cropland Data Layer (CDL) available annually from
2000 to 2010 (USDA NASS) for the six states.3 They are divided into major crops, other
crops, non-crop andwild, urban, and water bodies. Themajor crops include corn and soybean
for Iowa,Wisconsin, and Illinois; and corn, soybean, rice, and cotton for Missouri, Arkansas,
and Mississippi. The category of non-crop and wild land includes pasture, forest, improved
pasture, etc. Conservation reserve lands should fall within this category as they do not have
crops. We define agricultural land as the sum of major crops, other crops, and non-crop and
wild land. Because urban and water bodies are very difficult to convert into crop land, we do
not include them in discussion in this paper. Therefore, we define the share of major crops
as the area of major crops divided by area of agricultural land.

Figure 1 shows the coverage shares of corn, soybean, rice, and cotton along the corridor.
Corn grows mainly in the colder north, while soy crops are more widely distributed. Rice
and cotton concentrate along the river in Missouri, Arkansas and Mississippi. For corn, the
average percent coverage from 2002 to 2010 is 27.5% in the north (the three northern states:
Wisconsin, Iowa, and Illinois), while it is only 5.5% in the south (the three southern states:
Missouri, Arkansas, and Mississippi). For soy, the coverage is 20.9 and 29.4% in the north
and the south, respectively. There is little cotton and rice in the north, while in the south,
cotton takes 10.3% of the agricultural land and rice takes 11.8%.

2 There is currently insufficient land cover data to extend our analysis to other states.
3 The CDL is generated based on Resourcesat-1 AWiFS, Landsat 5 TM, and Landsat 7 ETM+satellites and
has a ground resolution of 56 or 30 meters, depending on the year and sensors used (Mueller and Seffrin 2006).
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Fig. 1 Observed crop coverage along the Mississippi-Missouri River system. Notes: graphs display observed
coverage shares for corn, soy, rice, cotton, and other land use, in the six states along the Mississipppi-Missouri
river corridor. They are average shares over 2001–2010

2.2 Soil Characteristics

For soil data we focus on two types of variables, both derived from the USDA’s U.S. General
Soil Map (STATSGO2). First, the underlying soil data include percent clay, sand, and silt,
water holding capacity, pH value, electrical conductivity, slope, frost-free days, depth to
water table, and depth to restrictive layer. Soil variable averages are spatially weighted from
irregular polygons for each grid cell.

Second, we use a classification system generated by the USDA—land capability class4

(LCC).ALCCvalue of one defines the best soilwith the fewest limitations for production, and
progressively lower LCC classifications signify more limitations on the land for agricultural
production. The LCC integer scores increase incrementally to eight, where soil conditions are
such that agricultural planting is nearly impossible. The use of LCC codes add explanatory
power to the raw soil characteristics because these codes were assigned with knowledge of
past yields that depend on characteristics not present in our data set. The spatial distribution
of LCC levels is shown in Fig. 2. Together with Fig. 1, we see that prime agricultural soils are
absent in southern Iowa and most parts of Wisconsin and so largely is the corn–soy complex.
Similarly, more optimal soils hug the river in Missouri and Arkansas, and so do rice and
cotton.

2.3 Weather Variables

For weather data we use PRISM data processed by Schlenker and Roberts (2009) to a 4 km
by 4 km spatial resolution, with a daily level of temporal resolution. The dataset includes both

4 LCC codes are based on physical measurements only. One reason why we don’t reproduce it with our
variables is that it is based on the soil series, which is categorical and we don’t use. http://www.nrcs.usda.go
v/wps/portal/nrcs/detail/national/about/history/?cid=nrcs143_021436.
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Fig. 2 Distribution of land
capabilty classification (LCC)
levels. Notes: land capability
class (LCC) one is the best soil,
which has the fewest limitations.
Progressively lower
classifications lead to more
limited uses for the land. LCC
eight means soil conditions are
such that agricultural planting is
nearly impossible

temperature (highs and lows) and precipitation. Two time periods of weather data are used
for each crop year. (1) The planting season data are known by farmers before they actually
plant. A cold wet spring, for instance, would delay planting and make a shorter season crop
more desirable than a longer season crop. Compared to corn, soy is more tolerant of being
planted late and more dependent on daylight hours, so it can make up time easily. When the
planting season is late, farmers are more inclined to plant soy. (2) Past weather is used as a
proxy for expected weather. We do not find much gain from including past weather beyond
one season, though, in terms of predicting current weather, quite a few lags of past weather
are statistically significant. For parsimony, we limit the lags of past weather to one.

Figure 3 shows the observed weather condition in the planting season (from April to
June)5 from 2002 to 2010 and the growing seasons (from April to November) from 2001 to

5 Planting season and growing season vary across crops and regions. In the six states along the Mississippi-
Missouri river corridor, the planting season is from April to May for corn, rice, and cotton, and from May
to June for soybean. The harvest season is October for rice and corn, and November for cotton and soybean.
Growing season is defined as the period between planting season (included) and harvest season (included).
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2009.6 The observed temperatures are warmer in the south and the precipitation levels are
larger. Monthly average temperature in the growing season ranges from 9 to 24 °C from the
top of Wisconsin to the bottom of our study areas in Mississippi, a distance of 1600 km.
Monthly average rainfall in a growing season is also variable across this landscape with a
high of 17 cm and a low of 7 cm, highest in the southeast and lowest in the north.

Degree days are calculated from daily highs and lows using a fitted sine curve to approx-
imate the amount of hours the temperature is at or above a given threshold (Baskerville and
Emin 1969). As in Schlenker and Roberts (2009), we bin the weather data into degree days
at a given temperature and above. We draw on their work and other literature to reduce the
number of bins to just those at critical thresholds. However, we expand the number of classi-
fications of temperature to account for the month in which it occurs. We expect, for instance,
that hot temperatures are not as harmful in autumn as they are in the middle of the growing
season.

2.4 Climate Change Scenarios

Climate change scenarios are taken from Climate Wizard.7 Two models are considered: (1)
ensemble average, SRES emission scenario: A1B; and (2) ensemble average, SRES emission
scenario: A2. Both models predict temperature and precipitation in change and in level for
the end of the century (2080s). The comparison baseline is the average temperature and
precipitation between 1961 and 1990.

Figure 4 shows the two climate change scenarios. The A1B model predicts a 4.1 °C
increase in temperature on average in the north, and a 3.7 °C increase in the south. The A1B
model also predicts a 1.35 cm increase in monthly precipitation in a planting season in the
north, and a 0.65 increase in a growing season; while in the south the A1B model predicts
a 0.22 cm decrease and a 0.243 cm decrease in a planting season and a growing season
respectively. The A2 model predicts similar warming and drying pattern, but 0.6 °C warmer
and 0.1 cm drier than A1B’s prediction.

Future degree days are processed in two steps: first, future temperature highs and lows are
generated by adding changes to original highs and lows; then the degree days are calculated
based on the future highs and lows.

2.5 Yield Data

For the yield equations, the county-level data (1950–2010) of non-irrigated planted area and
production on non-irrigated land is from USDA. Yield is defined as non-irrigated production
divided by non-irrigated planted area for corn, soy, and cotton. For rice, non-irrigated planted
area and production are not reported, because rice has to be irrigated. So for rice, yield is
defined as total production divided by total planted area.

6 We have ten year’s land use, soil and weather information from 2001 to 2010. Growing season weather
enters regressions as a lag variable. For 2001, there is no lagged land use data or lagged weather data, so 2001
is dropped from the regressions. Regressions for 2002 to 2010 use the growing season weather from 2001 to
2009.
7 Source: http://www.climatewizard.org/.
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Fig. 3 Observed weather conditions
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Fig. 4 Climate change scenarios. Notes: distribution is over 4 km squares for temperature change to 2080.
Annual temperature change is from http://www.climatewizard.org/. Since it’s annual, the temperature changes
in planting season and growing season are the same. Annual precipitation percent change is from the same
source.We convert percent change to change bymultiplying the observed precipitations in 2010 for themonths
in planting season and 2009 for the months in growing season

123

http://www.climatewizard.org/


498 L. Xie et al.

3 The Econometric System and Regression Results

In this section, we set up the econometric systems for crop coverage response and yield
response to weather and soil characteristics. We also present the regression results, based on
which we do the simulation under climate change scenarios in the next section.

3.1 Crop Coverage Response Equation

Within each of our 4 km grid cells, n, we observe the fraction of land in year t that was
allocated to crop (or other use) i : Sint . There are M crops. If we imagine that each hectare
of our grid cells has a crop choice, then on that hectare the crop with the highest profit will
be chosen. As a result, the fraction of the crop chosen in a grid cell will be a proportion type
model.

Sint � φ
((

β ′
1X1nt + d1nt

)
, . . . ,

(
β ′
MXMnt + dMnt

))
(1)

where Xint is a vector of determinate factors of profit from planting crop i on plot n at year t ,
β i is a vector of coefficients and dint is an error term. φ() is a suitable transformation with its
domain on the unit interval. When all of the shares are strictly within the unit interval, using
logit as the transformation and rearranging terms gives a linear estimation equation (Berry
1994): log(Sint ) − log(S0nt ) � β ′

i X int + dint . To deal with the fact that many plots do not
have a certain crop (i.e., many Sint are zeros), we instead use a ratio transformation and we
get

Sint
S0nt

� β ′
i X int + dint (2)

In order to predict shares as a function of the independent variables, we sum the share
ratio over Si (recall that the shares sum to one) and solve for S0nt

S0nt � 1

1 +
∑M

j�1

(
β ′

j X jnt + d jnt

) (3)

Substituting (3) into (2), we get

Sint � β ′
i X int + dint

1 +
∑M

j�1

(
β ′

j X jnt + d jnt

) (4)

The estimation strategy is that first we estimate Eq. (2) by Tobit, accounting for the zero
shares. Then we simulate d jnt ( j � 1, . . . , M) by taking draws from a left truncated normal
distribution with mean 0, standard deviation σ jnt and truncation at −β ′

i X jnt . Finally, we
calculate Sint for each draw and take the averages.

Because the scale of this study encompasses more than a 1000 km, some conditions that
change across the landscapemaynot be accounted in our variables. This spatial correlation can
induce heteroscedasticity, which would make straightforward tobit estimation inconsistent.
We know of two feasible estimation strategies. One strategy is to estimate a linear probability
model with a Spatial Error Model (SEM) correction for the errors. In the linear probability
model, OLS would be consistent and the SEM would serve to produce the correct standard
errors and a more efficient estimate of the coefficients. The limitation is that the prediction
of shares is not guaranteed to be between 0 and 1. The other solution is to estimate local tobit
models, each for only one county and its neighbors. The spatial correlation is taken care of
because the coefficients and the variances are free to vary across the landscape. Neighbors
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of county i are defined to be counties whose centroids are within 70 km distance of the
centroid of county i . 70 km is chosen based onMoran’s I tests. The tests show that the spatial
correlation in error decrease exponentially and beyond 70 km it is lower than 10−3. Within
70 km,8 a county has 8 neighbors on average and each county has about 100 4 km grid cells.
Therefore, each regression has about 900 observations.

Next, we consider what explanatory variables should be included. The Nerlovian adaptive
price expectations model (Nerlove 1956) assumed that farmers have rational price expec-
tations based on their information set, and described it in three equations. Braulke (1982)
derived a reduced form from the three equations by removing the unobserved variables. Choi
and Helmberger (1993) combined this reduced form and farmer’s demand functions. Based
on their work, Huang and Khanna (2010) described the crop share as a function of the lagged
share, climate variables, economic variables, risk variables, population density, and time
trend. Hausman (2012) included most of these explanatory variables, and also futures prices,
substitute crop share and crop yield. To follow the literature,9 we include as explanatory vari-
ables lagged crop share, lagged substitute crop shares, weather in the current planting season
and the last growing season, and soil conditions. We include the interaction term of heat and
moisture to account for the possibility that dry warming is much more harmful than warming
with moisture (Lobell et al. 2011). We also include year fixed effects to account for both
output and input prices and government programs. This leads to the following specification:

(5)

Sint
S0nt

� αi + βi Sint−1 + γ ′
i SSint−1 + ϕ′

i Soi ln + θ ′
1i GDDnt−1 + θ ′

2i P DDnt

+ θ ′
3i G Pnt−1 + θ ′

4i P Pnt + θ ′
5i P reDDnt−1 + μt + εint

where Sint is the fraction of land in year t that was allocated to crop i , SSint−1 is a vector of
the coverage shares of crop i’s substitutes planted at grid cell n in year t−1, and soy and corn
are substitutes in the north and all four crops are substitutes in the south; Soi ln is a vector of
soil conditions at grid cell n, including percent clay, percent sand, percent silt, water holding
capacity, pH, slope, electrical conductivity, frost-free days, depth to water table, and depth to
restrictive layer, as well as LCC (Land Classification Code); GDDnt−1 is a vector of degree
days by month in the last growing season (April through November in year t − 1), and the
data are binned at 10, 15, 20, 25, 29, 30, and 32 °C, where 10 °C is degree days≥10 °C, etc.;
P DDnt is a vector of degree days by month in the current planting season (April through
June in year t), and the data are binned at 10 and 15 °C; GPnt−1 is a vector of precipitation
bymonth in the last growing season; P Pnt is a vector of precipitation bymonth in the current
planting season; PreDDnt−1 is a vector of interactions of the inverse of precipitation and
the degree days at 32 °C and above in the same month, and all months in the last growing
season are included. μt and εint are the year fixed effect and the error term respectively. In

sum, Eq. (5) describes the coverage ratio
(
Sint
S0nt

)
as a function of lagged coverage shares of

the crop of interest (Sint−1) and its substitutes (Sint−1), soil characteristics (Soi ln), weather
conditions (GDDnt−1, P DDnt , GPnt−1, P Pnt , PreDDnt−1), and common shocks that
change along years (μt ).

We run separate land use regression for each crop and each county. In sum, we have 766
sets of estimates (312 counties; 2 main crops for the northern states and 4 main crops for the
southern states). We test the significance of soil, precipitation, and degree days. As shown

8 We also tried 130 km to define neighbors in the regressions. It turns out to have smaller maximum likelihood
and large minimum Chi square. So we choose 70 km for the regressions.
9 For reviews of share response literature, see Askari and Cummings (1977) and Nerlove and Bessler (2001).
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Table 2 F− tests for soil, precipitation and temperature

Corn (%) Soy (%) Rice (%) Cotton (%)

Regressions with 1% significance level

Soil 92 88 69 71

Precipitation 76 76 42 54

Temperature 89 87 79 93

Regressions with 5% significance level

Soil 93 89 75 83

Precipitation 83 84 59 69

Temperature 92 90 79 93

Regressions with 10% significance level

Soil 93 91 82 84

Precipitation 86 87 65 76

Temperature 93 90 79 94

Number of
regressions in
total

312 312 71 71

Separate regressions are run for each crop and each county. Corn and Soy regressions are for counties in the
six states along the Mississippi-Missouri river corridor (312 counties), while rice and cotton are for counties
in the three southern states (71 states)

in Table 2, soil and temperature are significant at the 1% significance level in 69 to 93%
of the regressions. Precipitation is significant at the 1% significance level in 42 to 76% of
the regressions. These results show that soil, precipitation and temperature are all important
determinants of crop coverage.

“Appendix A” explores how a 1-degree change in temperature and a 1-cm change in
precipitation affect crop coverage in both short run and long run. The results indicate that
rice and cotton in the south spread toward the north, consistent with the fact that rice and
cotton are heat-requiring crops; and farmers make different crop adaptations, even when
facing same level of climate change, and the reason is soil. The results also indicate that it
takes time for farmers to fully adjust crop coverage to weather shocks and 5 years is long
enough for the farmers to complete the adaptation. Therefore, in the simulation for the climate
change, we consider crop coverage response in 5 years.

3.2 Yield Equation

Yield is estimated at the county level as a function of weather, soil, and time trends. The
estimation differs from Schlenker and Roberts (2009) in the use of the interaction term for
hot and dry weather and in replacing the county fixed effects with soil variables. It leads to
the following yield equation:

Yict � αi + ϕ′
i Soi lc + θ ′

1i DDct + θ2i Pct + θ3i (Pct )
2 + θ4i PreDDct + θ ′

5i QT + εict (6)

where Yict is yield of crop i per acre (abbreviated as yield) in county c in year t ; Soi lc is a
vector of soil conditions in county c, weighted by crop acre over grid cells; DDct is a vector
of degree days in county c in year t , weighted by crop acre over grid cells, and the data are
binned at 0, 5, 10, 15, 20, 25, 29, 30, and 32 °C, where 10 °C is degree days >10 and≤15 °C;
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Pct is precipitation in county c in year t ; PreDDct is interaction of the inverse of precipitation
and the degree days at 32 °C and above, by year; QT is a vector of linear and quadratic time
trends by state; εict is the error term. In sum, Eq. (6) describes crop yield (Yict ) as a function
of soil characteristics (Soi lc), weather conditions (DDct , Pct , (Pct )2, PreDDct ), and time
trends (QT ). Precipitation and its quadratic form are both in the model because of the non-
linear relationship between yield and precipitation:When precipitation is low, additional rain
or snow relives the drought and therefore increase yield; while when precipitation is high,
additional rain or snow may harm the yield (Schlenker and Roberts 2009; Chen et al. 2016).

The individual coefficients are generally significant at the 95% level in the corn and soy
equations and more sporadically significant for rice and cotton, presumably because of the
much smaller sample size (about 20,000 county years for corn and soy, while only about
2000 county years for rice and cotton). The LCC variables for corn, soy, and cotton show a
large advantage to better soils. For cotton in particular, LCC 2 yields less than half of LCC 1.
In contrast, rice yields best in the lower rated soils, presumably because very wet soil is good
for rice and deleterious for the other crops and so has a low LCC rating. An F-test shows that
the soil variables are jointly significant in all crops.

The effect of extreme temperature on yield in this model comes from both the direct effect
of the high temperature variable (degree days at 32 °C and above) and from the interaction
term (degree days at 32 °C and above times the inverse of precipitation). The latter term
accounts for the effect of hot and dry as opposed to just hot weather. The effects of increasing
the degree days in the top temperature bin and the effect of increasing precipitation are given
in Table 3. Starting with precipitation, the effect of another centimeter of water when there
has been average precipitation is near zero for all crops. However, when there is another
centimeter of water at minimum precipitation, yield increases by 5.8% for corn, 5.0% for
soy, and 4.2% for cotton. Rice is usually irrigated and hence the effect is small and negative.
The effects of another degree day in the top temperature bin, at average precipitation, are
negative for all crops and strongest in corn with a 1% yield loss. However, when there is
another degree day at minimum precipitation, the loss is 1.8% for corn, 1% for soy, 1.4% for
cotton, and a slight gain for rice. These results on yield are similar to Schlenker and Roberts
(2009) in that very hot weather is deleterious to crop yield.

The detailed regression results for the yield equations are available in “Appendix B”.

4 Crop Coverage Responses to Climate Change

Based on the estimation above, we simulate crop coverage response to the climate change
A1B scenario. Figure 5 depicts the changes in the geographic distribution of crop coverage.
The comparison is the A1B scenario for the late century (2080s) to the actual coverage in
2010.

In the north, the average change for corn is a loss of 9.4 percentage points, starting from
a base of 27.5% of the land being devoted to corn. In the figure, corn coverage decreases
the most in northern and central Iowa and Illinois near the Mississippi River. These are the
places with the highest coverage in corn in the baseline. These negative changes are partially
offset by increases in coverage in northeastern Wisconsin. Given the sensitivity of corn to
high heat, a hotter climate would be expected to move the corn growing area northward, as
shown on the map. For soy, the loss in crop coverage in the A1B scenario is 6.3 percentage
points, starting from a base of 20.9% coverage. The pattern follows that of corn; the ratio of
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Table 3 Marginal effects of precipitation and temperature on yield

Corn Soy Rice Cotton

Precipitation at
average
precipitation

0.0002 0.0032*** −0.0033*** 0.0006

chi2 0.0300 62.8100 52.9600 0.1700

Precipitation at
minimum
precipitation

0.0583*** 0.0496*** −0.0250*** 0.0422**

chi2 25.9500 117.9600 17.3200 4.3900

DDay32 at average
precipitation

−0.0101*** −0.0033*** −0.0015*** −0.0067***

chi2 137.7900 24.0900 9.3600 16.2700

DDay32 at
minimum
precipitation

−0.0184*** −0.0107*** 0.0026*** −0.0142***

chi2 96.0300 170.3500 7.6900 17.1000

***, **,* represent 1%, 5%, 10% significance level, respectively
The reported numbers are partial derivatives of natural logarithm of yield on precipitation and temperature.
Therefore, a reported number, for example a, is interpreted as 100a percent change of yield due to one unit
change of precipitation or temperature

Fig. 5 Predicted crop coverage changes under the A1B scenario. Notes: a 20% change reported here means
corn (for example) share increases from a to a + 0.2

soybeans to corn is close to three-quarters in the baseline and remains close to three-quarters
in the A1B scenario in the north.

In the south, the change in climate removesmost of the remaining corn from the landscape.
Corn loses 4.5 percentage points from a base of 5.5% coverage. Soy is more suited to the
hot and wet climate. It loses 14.9 percentage points from a base of 29.4% coverage. Rice
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Fig. 6 Crop production loss with coverage fixed under the A1B scenario

and cotton coverage both increase in response to climate change. Rice gains 5.2 percentage
points in coverage from a base of 10.3%. Cotton gains a half percentage point from a base of
11.8%. In terms of geographical distribution, the rice area gained is to the north of the cotton
area gained. The likely reason that rice is positively influenced by the changed climate in that
it is irrigated and not susceptible to damage in hot, dry weather.

“Appendix C” presents the same analysis for the climate change A2 and for temperature
change only. We see that the A2 scenario has very similar effects on crop shares. Through
comparing temperature change only to both temperature and precipitation changes, we con-
clude that for the Mississippi-Missouri river system, the major concern about climate change
is warming, instead of drying.

5 Crop Production Losses to Climate Change with Crop Coverage Fixed

Figure 6 depicts production losses under theA1B scenario. These losses are predicted holding
crop coverage fixed, so they show only the effect of lower yields on production. While
Wisconsin gains corn and soy production, all other areas lose. Soy production is positively
affected over a larger area compared to corn. The positive effect on soy production includes
southwestern Wisconsin and northeastern Iowa. The production losses to both corn and soy
are generally greater farther south. As shown in Table 4, the change in total production,
holding crop coverage constant, is 20.3% for corn and 6.6% for soy in the north, while these
numbers are 83.1% for corn and 58.9% for soy in the south. For rice and cotton in the south,
there are production losses for both crops: 18.2% for rice and 59.0% for soy. In sum, only
Wisconsin becomes a better climate for growing the major crops.
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Table 4 Crop production loses through yield and coverage effects

Corn Soy Rice Cotton

North

Yield effect (%) −20.288 −6.574 – –

Coverage plus
yield effect (%)

−42.406 −32.399 – –

Base production in
2010

4598.476 1043.889 – –

South

Yield effect (%) −83.105 −58.891 −18.167 −58.990

Coverage plus
yield effect (%)

−91.274 −73.848 24.439 −55.746

Base production in
2010

509.234 393.818 15,007.600 1074.250

Total change in production

Yield effect −1356.150 −300.548 −2726.387 −633.704

Coverage plus
yield effect

−2414.815 −629.031 3667.674 −598.849

The reported production is in million bushels for corn and soy and million pounds for rice and cotton

6 Crop Production Loss to Climate Change, Considering Both Yield
Effect and Coverage Response

In this section, we answer the central question of the paper: what the production changes
will be when farmers adapt to climate change by changing the land use for crops. In these
estimates, both crop coverage and yield respond to climate change. These changes can be
seen as a shift in the supply curve; prices and other conditions are held fixed. Table 4 and
Fig. 7 provide the answer to this question.

Starting in the north, for corn (the first column of the table), 20.3% of production is lost
due to the yield effect, and it is more than doubled when yield and crop coverage are both
considered. For soybeans, loss from the yield and crop coverage effects together is five times
the yield effect alone, despite soy suffering only minor yield effects. The use of the soy–corn
rotation and the substitution away from corn is what leads to large coverage responses in soy
in the north. Land uses that will increase as corn usage decreases include the major uses for
2010 other than corn and soy. The largest of these uses are grass, forest, wetlands, alfalfa and
other hay. There are no other food crops with even 100,000 acres at present.

In the south, the coverage effect reinforces the production losses from the yield effect for
corn and soybeans. In the case of corn, the A1B scenario nearly eliminates corn from the
landscape; the production change through both effects is 1.1 times the yield effect. Soy is
grown independently from corn in the south, unlike the north; both effects together reduce
production by 1.3 times the yield effect alone. Because rice gains considerable coverage,
it goes from a production loss when considering only yield loss to a production gain when
considering both yield and coverage response. For cotton, the increase in coverage slightly
mitigates the yield loss. Thus, adaptation by changing the crop landscape within the exist-
ing crop collection, particularly the increase in rice and cotton, is noticeable in affecting
production changes when facing climate change.
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Fig. 7 Crop production loss with both yield effect and coverage response under the A1B scenario

7 Conclusion

This paper examines crop adaptation to climate change in the context of the six states along
the Mississippi-Missouri river corridor. We consider the entire distribution of temperatures
within each day and each 4 km grid cell. We also consider the soil conditions at the 4 km grid
level. Based on the estimates of crop choices, we predict future crop share distribution under
several climate change scenarios. We find that adaptation by changing crop choice offsets
the production losses caused by lower yields for rice and cotton. For the main food crops,
corn and soybeans, however these negative effects are reinforced.

In this paper we have dealt with changes in land use caused by climate. Government
programs that are themselves partially a reaction to climate change, like the US Ethanol
program, do by themselves induce land use change (Searchinger et al. 2008) For ethanol,
these indirect land use changes partially offset the direct land use change from a hotter
climate.

While this study shows that, ceteris paribus, the loss in food crop production from corn
and soybeans will be exacerbated by substitution away from these crops to other uses, the
underlying data on land use does not provide an obvious alternative. In the data pasture and
minor crops are lumped together and there are no other food crops that use a substantial part
of the landscape. With production losses as big as forecasted in this study, equilibration of
the crop supply–demand system would require large changes in price or crops novel to this
landscape. Price increases would draw land back into major crop production and might also
increase yield through more input (mostly more fertilizer) and technology improvement.
Should the equilibration be through price increases, then the quantity of food demanded,
which would equal the quantity produced from this landscape, will fall. It is only through the
introduction of crops new to this landscape that are more suited to the hot climate that food
production can be restored to its current level.
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Appendix A: Crop Coverage Response to Unit Change inWeather

Table 5 and Fig. 8 summarize the crop coverage share changes for two scenarios in both
short run and long run. In one scenario, daily temperature increases by one degree for all
months in 2009 and 2010. In the other scenario, monthly precipitation decreases by 1 cm
in all the months, and temperature increases as above. Table 5 shows that in the short run,
1-degree warming decreases corn and soy shares. With 1-degree warming, 1.6% less land
(a 5% decrease) in the north and 4.3% less land (a 77% decrease) in the south is covered
by corn; 1.2% less land (a 6% decrease) in the north and 0.3% less land (a 1% decrease)
in the south is covered by soy. One degree warming increases rice share by 0.042 (a 40%
increase in the south) and cotton share by 0.072 (a 61% increase in the south). It suggests that
warming favors rice and cotton. Looking at corn and soy, dry warming decreases coverage

Table 5 Crop coverage changes with unit change in temperature and precipitation

Corn Soy Rice Cotton Other

North

Unit changes

Short-run

Temperature increase only −0.0159 −0.0116 – – 0.0276

Temperature increase and
precipitation decrease

−0.0179 −0.0139 – – 0.0318

Long-run

Temperature increase only −0.0455 −0.0340 – – 0.0795

Temperature increase and
precipitation decrease

−0.0496 −0.0390 – – 0.0886

Average shares 0.2920 0.1969 – – 0.5111

No. of obs. 27,365 27,365 27,365 27,365 27,365

South

Unit changes

Short-run

Temperature increase only −0.0428 −0.0028 0.0415 0.0718 −0.0677

Temperature increase and
precipitation decrease

−0.0398 −0.0057 0.0197 0.0733 −0.0475

Long-run

Temperature increase only −0.0430 −0.0117 0.0294 0.0649 −0.0395

Temperature increase and
precipitation decrease

−0.0392 −0.0171 0.0061 0.0688 −0.0185

Average shares 0.0238 0.1025 0.0351 0.0204 0.8737

No. of obs. 4260 4260 4260 4260 4260

The numbers reported are share changes. For example, −0.0074 means corn share increases from 0.0378
(3.78% of land is covered by corn) to 0.3706
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Fig. 8 Distribution of crop coverage changes with unit change in temperature and precipitation. x-axes are crop
share changes. For example, 0.2 in the first panel means corn share increases from a to a + 0.2. SR stands for
short run, which is the year when the weather change happens. LR stands for long run, which is 5 years after
the weather change happens. For corn and soy, all six states are included. For rice and corn, only the three
south states are included, because there is little rice and cotton in the north

more than warming alone in the north, but this pattern does not hold for corn in the south,
which is wetter. Figure 8 shows that although the averages in share change are different in
the scenarios with and without a change in precipitation, the difference is small and the share
change patterns are similar. This indicates that a 1 cm change in precipitation is not large
enough to have significant effects on crop adaptation.

Table 5 and Fig. 8 also show that the share changes of corn and soy in the long run are
larger on average and the distributions have fatter tails. This indicates that it takes time for
farmers to fully adjust crop coverage to weather shocks. The share changes of rice, cotton,
and other land use in the long run are larger. We also check the crop share changes in 2020
and find that they are very similar to those in 2015. This suggests that 5 years is long enough
for the farmers to complete the adaptation.

To illustrate how crop adaptation varies across landscapes, Fig. 9 maps out the long-run
share changes for the 1-degree-warmer scenario and the 1-degree-warmer-and-1-centimeter-
drier scenario, respectively. The findings are as follows. First, the two scenarios have similar
land cover shifting patterns, which confirms the findings in Fig. 8. Second, rice and cotton
in the south spread toward the north, which is expected, because the north becomes more
suitable for rice and cotton. Third, the main crops, mainly rice and cotton, take land from
minor crops and other uses in the south. This suggests that a 1-degree increase from current
temperature is beneficial to rice and cotton. This is consistent with the fact that rice and cotton
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Fig. 9 Crop coverage changes with unit change in weather. NotesA 20% change reported here means corn (for
example) share increases from a to a + 0.2

are heat-requiring crops. Last, but not at least, farmers make different crop adaptations, even
when facing same level of climate change, and the reason is soil.

Appendix B: Full Regression Results of County Yield Equations by Crop

See Table 6.
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Table 6 County yield equations by crop

Variables (1)
Corn

(2)
Soy

(3)
Rice

(4)
Cotton

Degree days between 0 and
5 °C

0.0035***
(0.0007)

0.0022***
(0.0005)

−0.0063*
(0.0033)

−0.0276***
(0.0062)

Degree days between 5 and
10 °C

−0.0032***
(0.0007)

−0.0053***
(0.0004)

−0.0025*
(0.0014)

0.0096***
(0.0033)

Degree days between 10 and
15 °C

0.0067***
(0.0006)

0.0063***
(0.0004)

0.0023***
(0.0007)

−0.0030*
(0.0018)

Degree days between 15 and
20 °C

−0.0035***
(0.0004)

−0.0022***
(0.0003)

0.0011***
(0.0004)

0.0011
(0.0012)

Degree days between 20 and
25 °C

0.0011***
(0.0004)

0.0007***
(0.0003)

−0.0009*
(0.0005)

−0.0003
(0.0011)

Degree days between 25 and
29 °C

0.0056***
(0.0008)

0.0008
(0.0006)

−0.0015
(0.0010)

0.0022
(0.0026)

Degree days between 29 and
30 °C

−0.0420***
(0.0050)

0.0074*
(0.0040)

0.0095*
(0.0052)

0.0289*
(0.0153)

Degree days between 30 and
32 °C

0.0082***
(0.0025)

−0.0104***
(0.0021)

−0.0023
(0.0021)

−0.0154**
(0.0063)

Degree days above 32 °C −0.0065***
(0.0015)

−0.0002
(0.0009)

−0.0032***
(0.0009)

−0.0035
(0.0029)

Degree days above 32 °C *
precipitation

−0.2471***
(0.0613)

−0.2182***
(0.0248)

0.1204***
(0.0349)

−0.2222*
(0.1168)

Precipitation 0.0161***
(0.0013)

0.0103***
(0.0008)

−0.0017
(0.0018)

−0.0003
(0.0049)

Precipitation square −0.0001***
(0.0000)

−0.0001***
(0.0000)

0.0000
(0.0000)

−0.0000
(0.0000)

Slope 0.0012
(0.0013)

0.0078***
(0.0009)

0.0069
(0.0064)

0.0281***
(0.0079)

Frost free days 0.0017***
(0.0001)

−0.0002**
(0.0001)

−0.0001
(0.0003)

−0.0001
(0.0002)

Electrical conductivity −0.2124***
(0.0357)

−0.2359***
(0.0322)

0.3799
(2.0852)

−13.3958***
(4.7769)

pH 0.1917***
(0.0105)

0.1063***
(0.0070)

0.0639**
(0.0259)

0.0133
(0.0369)

Organic matter −0.0470***
(0.0028)

−0.0161***
(0.0017)

−0.2158***
(0.0302)

−0.1693***
(0.0374)

Percent clay (%) −0.0396***
(0.0043)

−0.0017
(0.0028)

−0.0093**
(0.0047)

−0.0136
(0.0122)

Percent sand (%) −0.0350***
(0.0044)

−0.0025
(0.0029)

−0.0061
(0.0046)

−0.0417***
(0.0117)

Percent silt (%) −0.0385***
(0.0044)

−0.0045
(0.0029)

−0.0027
(0.0046)

−0.0295***
(0.0114)

Water holding capacity 6.3625***
(0.2312)

3.1518***
(0.1749)

0.7896
(0.5896)

1.3035
(1.0746)

Depth to restrictive layer 0.0007***
(0.0001)

0.0000
(0.0001)

0.0004*
(0.0003)

0.0018***
(0.0004)
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Table 6 continued

Variables (1)
Corn

(2)
Soy

(3)
Rice

(4)
Cotton

Depth to water table 0.0022***
(0.0001)

0.0006***
(0.0001)

−0.0001
(0.0005)

0.0032***
(0.0010)

Percent of land class 1 0.3630***
(0.0549)

0.2422***
(0.0466)

−0.0977
(0.1158)

0.9171***
(0.2055)

Percent of land class 2 0.1929***
(0.0279)

0.2051***
(0.0204)

0.2368***
(0.0883)

0.3848***
(0.1249)

Percent of land class 3 0.0950***
(0.0251)

0.1089***
(0.0188)

0.2522***
(0.0835)

0.0792
(0.1179)

Percent of land class 4 0.2969***
(0.0344)

0.1110***
(0.0252)

0.1646**
(0.0815)

0.4929***
(0.1093)

Percent of land class 5 0.1142**
(0.0530)

0.3850***
(0.0395)

0.2743***
(0.0805)

0.1906
(0.1354)

Percent of land class 6 0.0562*
(0.0292)

−0.0511**
(0.0217)

0.2542***
(0.0719)

−0.1460
(0.1194)

Time trend for AR −0.0044***
(0.0013)

0.0312***
(0.0018)

0.0015
(0.0021)

0.0019
(0.0059)

Time trend for IL 0.0365***
(0.0008)

0.0473***
(0.0011)

Time trend for IA 0.0491***
(0.0009)

0.0523***
(0.0011)

Time trend for MS −0.0175***
(0.0012)

0.0229***
(0.0012)

−0.0001
(0.0023)

0.0152***
(0.0058)

Time trend for MO 0.0314***
(0.0009)

0.0430***
(0.0011)

−0.0062***
(0.0023)

Time trend for WI 0.0311***
(0.0014)

0.0474***
(0.0015)

Time trend square for AR 0.0005***
(0.0000)

−0.0003***
(0.0000)

0.0001***
(0.0000)

0.0002***
(0.0001)

Time trend square for IL −0.0003***
(0.0000)

−0.0004***
(0.0000)

Time trend square for IA −0.0004***
(0.0000)

−0.0005***
(0.0000)

Time trend square for MS 0.0007***
(0.0000)

−0.0001***
(0.0000)

0.0002***
(0.0000)

−0.0000
(0.0001)

Time trend square for MO −0.0002***
(0.0000)

−0.0004***
(0.0000)

0.0003***
(0.0000)

Time trend square for WI −0.0001***
(0.0000)

−0.0004***
(0.0000)

Constant 0.0811
(0.5938)

−0.2476
(0.3810)

14.0369***
(2.2698)

25.2861***
(4.1823)

Observations 24,628 18,361 2068 2399

R-squared 0.7436 0.7465 0.7705 0.5790

***, **,* represent 1%, 5%, 10% significance level, respectively
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Appendix C: Predicted Crop Coverage Changes Under the A2 Scenario

Figures 10 displays the spatial variations of crop adaptation under A2 model considering
both temperature and precipitation changes. It is similar to the crop adaptation under A1B
model, shown in Fig. 5 in the main text. The figures show that in the face of climate change,
farmers, in general, will grow less corn and soy, more rice and cotton, and shift rice and
cotton towards north.

Figure 11 depicts the distributions of predicted crop share changes under climate change
scenarios. Compared to Fig. 8, Fig. 11 has wider distributions, which is expected because the
A1B and A2 scenarios have larger increases in temperature than a one-unit increase. It also
shows that the four climate change scenarios lead to similar land use shifting patterns, which
suggests that a drying climate within the predicted magnitude does not significantly worsen
the growth condition for crops. Therefore, we conclude that for the Mississippi-Missouri
river system, the major concern about climate change is warming, not drying.

Fig. 10 Predicted crop coverage changes under the A2 scenario. Notes: a 20% change reported here means
corn (for example) share increases from a to a + 0.2
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Fig. 11 Distribution of predicted crop coverage changes under climate change scenarios.Notes: x-axes are crop
share changes. For example, −0.5 in the first panel means corn share decreases from a to a − 0.5. For corn
and soy, all six states are included. For rice and corn, only the changes in the three south states are included,
because there is no rice and cotton in the north
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