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Abstract 

 

Farm-level adoption of a portfolio of climate-smart agricultural (CSA) practices remains important 

to climate change adaptation and agricultural development in Sub-Saharan Africa. This paper uses 

nationally representative panel data sets in rural Nigeria to understand farm households’ decisions 

on choices of a range of CSA practices – such as cropping system diversification, improved seeds, 

and inorganic and organic fertilizers – and assess their combined effect on net farm returns using 

an endogenous switching treatment effects method. Our results reveal that adoption of CSA 

practices differs according to the level of asset ownership and incidence of shocks. While adoption 

of an individual CSA practice increases income compared with non-adoption, the highest farm 

income was achieved when farmers adopted all practices jointly. We conclude that adoption of 

multiple CSA practices can enhance farm income.   
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1. Introduction  

In Sub-Saharan African countries, smallholder farmers are challenged with frequently 

changing patterns of temperature and precipitation and increased occurrences of extreme events 

such as droughts and floods. Climate change is projected to reduce yields and income from 

agriculture in the region by about 90% in 2100 (IPCC, 2007).  In Nigeria in particular, changes in 

temperature and precipitation patterns expose the country’s agricultural production systems to 

tremendous climate risks causing crop failures and production declines. Findings from historical 

climate and yield data in Nigeria show that temperature and precipitation changes have reduced 

maize and rice yields and increased the variability of yields (Aye and Ater, 2012).  

Climate change is adding pressure to the already stressed ecosystems in which smallholder 

farming takes place. These farmers face overlapping constraints, such as moisture stress, loss of 

soil fertility, pest and diseases, etc. These constraints pose a challenge to intensification of 

agricultural production through crop management alternatives such as adoption of external inputs 

(improved seeds and fertilizer). Appropriate climate-smart agricultural (CSA) practices are 

important to enhance productivity in agriculture, ensure resilience to climatic stresses, and 

sustainably reduce greenhouse gas (GHG) emissions from agricultural production (FAO, 2010). 

Yet, adoption remains below optimal levels. Therefore, a better understanding of the drivers of 

adoption of multiple CSAs and their impact remains a critical challenge to climate change 

adaptation and agricultural development in Sub-Saharan Africa. Yet, much less is known about the 

impact of climate change on the activities of other important actors along commodity value 

chains.  

In this study, we explore how farmers make the choice of four agricultural practices – cropping 

system diversification, modern seeds, and inorganic and organic fertilizer – and the impact of the 

different combinations of these practices on farm income. We build on recent studies (Aryal et al., 

2018; Di Falco and Veronesi, 2013; Isaahaku and Abdulai 2019; Kassie et al., 2015; Kassie et al., 

2017; Ng’ombe et al., 2017; Teklewold et al., 2017; Teklewold et al., 2019) that argue that farmers 

can benefit by adopting multiple practices jointly so as to exploit the potential advantages of 

complementarity to deal with the overlapping constraints discussed above. In complex smallholder 

farming systems, analysis made without considering such interdependence may bias the estimation 

of the influence of several factors on the decision to adopt the practices (Hassan and Nhemachena 

2008; Wu and Babcock, 1998). 

There is worldwide recognition of the potential benefits of cropping system diversification in 

terms of increasing farm productivity, reducing risk of crop failure, and increasing year-round 

employment (Tilman et al., 2002). However, to the best of our knowledge, no studies have focused 
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specifically on smallholder agricultural intensification that requires joint adoption of integrated 

land and crop management alternatives. Hence, we examine the potential complementarity of these 

crop and land management practices. Our novel contribution is investigating whether adoption of 

a combination of these climate-smart practices will provide more economic benefits than adopting 

them individually.  

Cropping diversification is a strategy for growing more than one crop across space or time 

which involves the exploitation of jointly beneficial interactions among individual crops. These 

include reducing the incidence of weeds, pests and diseases; improving soil fertility, organic matter 

content, and water-holding capacity; diversifying seasonal requirements for resources; and 

stabilizing farm income over time through evening out the impact of price fluctuations (Jhamtani, 

2011; Liebman and Dyck, 1993; Snapp et al., 2010; Tilman et al., 2002). This practice is often 

considered a key component of integrated soil fertility management and integrated pest 

management strategies for smallholder farmers. Crop diversification also allows farmers to 

cultivate crops that can be harvested at different times and in different places, and that have 

different weather or environmental stress-response characteristics. Hence, multiple cropping 

serves as a good strategy to mitigate the effects of drought and to increase water use efficiency, 

while increasing the overall yield of the cropping system (Kar et al., 2004). If cropping system 

diversification is combined with other farm technologies such as modern crop varieties and 

fertilizer, farm production can use ecosystem services more efficiently. 

Improved seeds and inorganic fertilizer are climate-smart agricultural practices that can 

increase farm income for a rapidly growing population by improving farm productivity (Brown 

and Funk, 2008). Improved farm productivity increases resilience to climate variability and hence 

is an important strategy in adaptation to future climate change (Bryan et al., 2011). Moreover, 

appropriate use of fertilizer is required, both to enhance crop productivity and to produce sufficient 

crop residues to ensure soil cover under smallholder conditions (Vanlauwe et al., 2013). Research 

on adoption of modern crop varieties and fertilizer can inform strategies for adapting to climate 

change. However, relatively little rigorous work on adaptation has been carried out; expanding this 

knowledge is a further contribution of this paper. 

The use of organic fertilizer refers to the application of compost and livestock wastes on the 

farming plot. It is a major component of sustainable agricultural systems, with the potential benefits 

of long-term maintenance of soil fertility through supplying soil nutrients, especially nitrogen, 

phosphorus and potassium. The application of organic fertilizers can increase soil organic matter 

content, which leads to improved water infiltration and soil-water holding capacity. Improving soil 

organic matter enables the removal of atmospheric CO2 by allowing the land to serve as a carbon 
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sink (Marenya and Barrett 2009). All these have implications for climate change mitigation and 

adaptation.  

The paper is organized as follows. Section 2 provides a brief description of the survey and 

summarizes the data used in the analysis. Section 3 presents the conceptual and econometric 

framework. Section 4 presents our estimation results on the determinants of choice of CSA 

practices and their impact on net farm income. The final section concludes and draws key policy 

implications. 

 

2. Data and Methods 

2.1 Survey description  

The data for this study is obtained from the Nigeria General Household Survey (GHS) panel 

data sets collected in 2011/2012, 2013/2014 and 2015/2016. The data set was collected from a 

nationally representative survey of 5000 households and it covers all agricultural periods. The GHS 

sample comprises 60 Primary Sampling Units (PSUs) or Enumeration Areas (EAs) which were 

selected from each of the 37 states in Nigeria. This gives a total of 2,220 EAs nationally. Each EA 

contributes 10 households to the GHS sample, resulting in a sample size of 22,200 households. 

Out of the 22,000 households, 5,000 households from 500 EAs were randomly selected to establish 

the panel component in the consecutive survey periods. Out of the 5000 households, 4,997 

households completed the interview in wave one, 4746 in wave two and 4611 in wave three. This 

attrition is because some households moved, especially as a result of the poor security situation in 

North East Nigeria. The overall attrition rate between wave one and three is about 8 percent.   

In all rounds of the survey, a questionnaire containing different types of modules was 

administered. These included a household module asking questions about livelihood, household 

composition, socioeconomic status, and shocks, and a community module seeking information on 

geographic location and climate characteristics. Households were also asked whether they had 

applied different agricultural practices and technologies on each of their farming plots in the study 

period. They also were asked the details of farm input utilization, output obtained, and farm 

revenue generated1. The survey also recorded geo-referenced household level latitude and 

longitude coordinates, allowing us to link household-level data to historical temperature and 

precipitation data. 

 
1 Our outcome indicator is net farm income, after input costs (fertilizer, seed, labour and pesticides) have been 

accounted for. This is used instead of crop yield to address the problems of multiple cropping and cost differences 

across practices. 
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2.2 Descriptive statistics 

Choice variables – climate smart agricultural practices 

Table 1 depicts the adoption rate of the different CSA practices (cropping system 

diversification, modern seeds, inorganic and organic fertilizers) in each year of the survey.  

The adoption patterns and the frequency of responses for each strategy across the whole sample 

and for each survey year show that adoption of multiple strategies is common among households 

in the study areas. On average, cropping system diversification, improved crop seeds, inorganic 

and organic fertilizer were used on 82, 68, 40 and 15% of the plots, respectively. Table 2 reports a 

series of binary triplets that highlight the different combinations of strategies that be considered as 

partial adoption. On average, about 95% of households adopted one or more of the CSA strategies. 

Close to 1% of the households adopted the four practices jointly while less than 17% of households 

employed only one of these strategies. The sample unconditional and conditional probabilities 

presented in Table 3 also highlight the existence of interdependence across the four practices. For 

instance, the probability of adopting cropping system diversification and inorganic fertilizer 

respectively increased by 8 and 15% conditional on adoption of organic fertilizer. The conditional 

probability of household adopting cropping system diversification and organic fertilizer increased 

by 3 and 5%, respectively, when farmers applied inorganic fertilizer. 

A non-parametric net farm income distribution analysis showed that all the CSA practices 

considered in this study impact the net value of farm production. However, across all these CSA 

practices, the cumulative distribution of the net value of farm production on plots with cropping 

system diversification, modern seeds, inorganic or organic fertilizer do not uniformly dominate the 

net farm income cumulative distribution on plots without any of these CSA practices. This is shown 

by the graphs (Figure 1) of the cumulative density function (CDF) of net farm income with one or 

more CSA practices, which are not constantly below or equal to that of plots without any of these 

practices. 

Control variables   

Summary statistics of the variables used in the econometric analysis are reported in Table 

4, disaggregated by non-adopters and adopters of CSA practices. The choice of the explanatory 

variables in our model specification is based on previous literature on farmers’ adoption of various 

types of agricultural practices and technologies (Aryal et al. (2018);  Isaahaku and Abdulai (2019); 
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Kassie et al. (2014); Kassie et al. (2017); Ng’ombe et al. (2017); Teklewold et al (2013);      and 

Teklewold et al. (2019). 

The main covariate and idiosyncratic risk factors considered are climatic variables, health shock, 

and pest attack. We construct shocks dummy variables based on self-reported responses to 

questions related to different types of idiosyncratic shocks. Responses to each of these questions 

(either yes or no) were coded as unfavorable or favorable outcomes, respectively. To control for 

the covariate climatic shocks, we derived long-term mean rainfall and temperature variables and 

included them in the regression model. This is obtained from the survey that recorded geo-

referenced household-level latitude and longitude coordinates using Global Positioning System 

(GPS) devices, which allows for the linking of household-level data to these historical climate 

variables (temperature and rainfall).  

We include size of farm land and livestock ownership (in Tropical Livestock Units, TLU) 

as a measure of household wealth and to control for a household’s response to risk exposure 

(Morduch 1995). Both are indicators of the household’s dependence on agriculture and rainfall. A 

common indicator to proxy income diversification is the income derived from off-farm 

employment and remittance income.  We therefore include a dummy variable equal to 1 if the 

household received a remittance in the form of cash and/or participated in off-farm work, as an 

indicator of additional income, which could influence adoption of CSA practices. Often, rural 

households diversify their sources of income in order to smooth their income and consumption 

(Barrett et al., 2001) or to relax liquidity constraints in implementing adaptation practices 

(Teklewold et al., 2019). We explore how the households’ off-farm participation and incidence of 

remittance have an effect on choice of CSA strategies. We considered household’s access to road 

and market and their demographic characteristics as proxies for access to information and market 

opportunities. Access to such infrastructure is measured by the average distance to reach the nearest 

road and input and output market; limited access can negatively influence adoption by increasing 

travel time and transport costs.  

We include some plot-specific attributes, including number of parcels, plot slope, plot 

elevation, plot wetness, and spatial distance of the plot from farmer’s residence. About 90% of 

landowners operate on up to nine parcels of land, each with about 2.5 ha, and these plots are often 

not spatially adjacent. The variable distance to plot is an important determinant of adaptation 

practices through its effect on increasing transaction costs on the farthest plot, particularly 

transporting bulky inputs. For instance, plots that receive organic fertilizer tend to be closer to 

home (about 1.3 km) than plots with the other practices (about 2.5 km). Distant plots usually 

receive less attention and are difficult to monitor; this makes it less likely that farmers will adopt 
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diversification, particularly of cereal and legume crops. We also controlled for the agro-ecological 

zone where the household is located. Different agro-ecological zones may affect the type and 

combination of CSA practices. 

2.3 Econometric Approach and Model Specification 

Simultaneous endogenous switching regression 

We used an empirical method that models farmers’ decisions regarding the adoption of a 

portfolio of CSA practices and simultaneously models the influence of the CSA practices on farm 

returns. It is assumed that farm households choose a single adaptation strategy or a combination of 

strategies that maximizes the expected utility conditional on the decision. Thus, the adoption 

decision is inherently multivariate, and the approach using univariate modeling often doesn’t show 

important economic information contained in interdependent decisions (Kassie et al., 2015; 

Teklewold et al., 2013). Our approach recognizes that the same unobserved characteristics of 

farmers could influence the adoption of the various strategies and therefore is more efficient than 

the univariate methods of analyzing adoption of each strategy independently.  Thus, the choice of 

various combinations of CSA actions and their implications for farm return is analyzed by applying 

a two-stage estimation procedure (Bourguignon et al., 2007), using endogenous switching 

regression with a multivariate probit model (MVP). In the first stage, a multivariate probit model 

is used to analyze the determinants of the adoption decisions. In the second stage of the estimation, 

the impacts of adopting various CSA strategies for farm income outcome are analyzed. 

This study recognizes that differences in farm income between those households that did 

and did not adopt CSA practices may be due to selection bias from observable and unobservable 

characteristics. We assume adoption of farm technologies among farmers are non-random, where 

adopters are likely to differ from non-adopters in the distribution of their observed household 

socioeconomic characteristics, resulting in selection bias on observables. This bias would arise 

because the adoption criteria can also be expected to influence farm income even in the absence of 

the coping strategies when using standard econometric approaches (e.g., ordinary least-squares). 

The second source of selection bias is from the difference in the distribution of unobservable 

characteristics between the adopters and non-adopters of the practices, where the unobservable 

factors, such as motivation and ability, affect both the choice of practices and the farm income. 

That is, the measured effect of the different strategies on the household outcomes may just be due 

to the difference in the unobservable characteristics, rather than being due to CSA adoption. The 

presence of unobserved heterogeneity in the outcome equations, if correlated with observed 

explanatory variables, can also lead to inconsistent estimates.  
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The endogenous switching regression combined with panel data can help avoid bias in the 

impact estimates and build a statistical comparison group of farmers akin to CSA adopters. The 

multivariate probit model employing Mundlak (1978) device is first estimated to find estimates of 

time-variant individual heterogeneity (Inverse Mills Ratios)2 causing selection bias. The farm 

income equations are then estimated by fixed effects, including Inverse Mills Ratios estimates from 

the first stage as additional explanatory variables. The use of Mundlak in the first step and fixed 

effects approach in the second step capture time-invariant individual heterogeneity underlying 

endogeneity and Inverse Mills Ratios take care of time-varying heterogeneity. The Mundlak 

approach permits including the means of the time-varying covariates in the adoption equations as 

additional variables in the multivariate probit model, as a proxy for eliminating the time-invariant 

individual effects. Modeling this dependence permits unbiased estimation of the parameters, 

irrespective of whether or not the explanatory variables and the individual effects are independent 

in the equations (Ebbes et al., 2005). 

Consider the
thi  household ) ., . ,.1( Ni =  that is facing a decision on whether or not to adopt 

the available CSA practices. Let kU  represent the benefit of adopting the 
thk practice, where k

denotes the choice of different strategies such as cropping system diversification (C), improved 

seeds (V), inorganic fertilizer (F) and organic fertilizer (O); and let jU
 represent the benefits to the 

household from non-adoption rather than the kth strategy. The household decides to adopt the
thk

strategy if the associated utility, kU  outweighs the utility that could be obtained from non-

adoption, jU
 , such that 

)max( jk UU 
 where k=C, V, F, O and k≠j.  The utility that 

the farmer derives from the adoption of the 
thk  practice is a latent variable 

determined by observed socioeconomic and climate variables and expressed as follows:  

itkkititk XU  ++=*

 )O,F,V,Ck( =  .   (1) 

 
2The inverse Mill’s Ratio  is defined as the ratio between the standard normal probability distribution function and 

the standard normal cumulative distribution function.  It is the selection term that captures all potential effects of the 

difference in unobserved variables. 



   
 

10 
 

where itX   is a matrix of household characteristic and climate variables, k are parameters to be 

estimated,  is unobserved time-constant heterogeneity and itk  is the disturbance term. 

Using the indicator function, the unobserved preferences in equation (1) translate into the observed 

binary outcome equation for each choice as follows: 

)O,F,V,C(k
otherwise0

0Uif1
I

*
itk

itk =




 

=

 .   (2) 

These selection equations estimate the probability of adopting CSA practices. Because 

simultaneous adoption of several practices is assumed, the system of equations from (2) is 

estimated using the multivariate probit model. The error terms jointly follow a multivariate normal 

distribution with zero conditional mean and variance normalized to unity (for identification of the 

parameters) where ),0(MVN.~)u,u,u,u( OFVC   and the symmetric covariance matrix  is given by: 

 



























=

1

1

1

1

F,OV,OC,O

O,FV,FC,F

O,VF,VC,V

O,CF,CV,C

 (3) 

where   (rho) represent the pairwise correlation coefficient of the error terms corresponding to 

any two CSA practice equations to be estimated in the model. Of particular interest are the non-

zero off-diagonal elements in the variance-covariance matrix, which represent the occurrence of 

error terms correlation between the different equations. This assumption implies that equation (2) 

represents an MVP model that illustrates the decisions to adopt CSA simultaneously. A positive 

correlation of   is understood as a complementary association, while a negative relationship is 

taken as being alternates.  

We also required estimating the outcome equations, conditional on households’ decision to 

adopt different CSA practices. Because the decision to adopt the four practices in equation (2) is 

defined over the entire set of observations, then a simultaneous decision with sixteen possible 

classifications of groups would result, as shown in Table 2. Then, in the second step, the 

relationship between the farm income variables and a set of control variables is estimated by a 

fixed effect model for the chosen combination of CSA practices. The outcome equation for the jth 

combination of practices is given as: 

itjjitjitj uδZY ++=
 jI if it =      for j= 1, . . . , J (3) 
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Here 
s'Yitj are vectors of the outcome variable (net farm income) of the 

thi  farmer for CSA category

j  at time t and the error term
)s'u( itj is distributed with 

0)Z,Xu(E itj =
 and 

2
jitj )Z,Xu(var =

. itjY
 is 

observed if and only if CSA practice j is used; Z is a vector of covariates influencing farm income, 

and   is unobserved time-invariant household heterogeneity. From the estimation results of the 

multivariate probit model (equation 2), we derive the Inverse Mills Ratio )(  variables that will be 

added as additional explanatory variables in the second-stage outcome equations (3) to capture 

individual heterogeneity underlying selection bias3. The second-stage equation of the endogenous 

switching regression in (3) is re-specified as: 

itjjitjjitjitj uˆδZ +++=
 jI if it =      for j= 1, . . . , J (4) 

where j is the parameter of coefficients for itj̂
showing the covariance between s and su . 

Impact assessment  

The predictions from estimation of the outcome equation (4) for each combination of 

practices are used to derive the conditional expectations and the average difference in net farm 

income between non-adopters and adopters of different CSA practices. These are given as follows. 

Average net farm income for adopters with adoption of the jth practice (this is what we actually 

observed in the sample): 

ijjijjiij Z)jI|Y(E +==
      for j= 2, . . . , J  (5) 

Average net farm outcome for non-adopters without adoption (this is also actually observed in the 

sample): 

1i11i1i1i Z)1I|Y(E +==       for j= 1     (6)  

Average net farm outcome for adopters had they decided not to adopt (counterfactual): 

ij1ij1i1i Z)jI|Y(E +==
      for j= 2, . . . , J               (7) 

Average net farm outcome for non-adopters had they decided to adopt (counterfactual): 

1ij1ijiij Z)1I|Y(E +==
      for j= 2, . . . , J                (8) 

These expected values are used to compute unbiased estimates of the effects of adoption of a 

combination of CSA practices. The average adoption effect of CSA practices conditional on 

 
3See Bourguignon et al. (2007) for the derivation of selection bias correction terms from the choice model. 
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adopters provides an estimate of the average treatment effect on the treated (ATT). This estimand 

answers the question of how the average net farm income would change if everyone who adopted 

a combination of CSA practices had instead not adopted the practices. The ATT is defined as the 

average difference in net farm income between adopters of CSA practices and their 

counterfactuals, given by the difference between Equations (5) and (7): 

)()(Z)jI|Y(E)jI|Y(ATT 1jij1jiji1iiij −+−==−==
   (9) 

We also derive estimands that compare the average net farm income of complete adoption with 

partial adoptions. This is the average adoption effect of a complete package of CSA practices 

conditional on complete adopters )ATT( P , and answers the question of how the average net farm 

income would change if everyone who adopted a combination of all CSA practices had instead 

adopt only some of the practices. This is computed as follows: 

)()(Z)jI|Q(E)16I|Q(ATT j1616ij1616iiiji16iP −+−==−==
 for j= 2, . . . , 15      (10) 

 

4. Results and Discussion   

4.1 Factors Influencing Adoption Decisions 

The estimation results from the MVP model with Mundlak’s method are reported in Table 

5.  The model is estimated using the maximum likelihood method on plot-level observations. We 

test the null hypothesis that all regression coefficients in the four adoption equations are jointly 

equal to zero. The Wald statistics reject the null hypothesis and show that the model fits the data 

well.  Similarly, the null hypothesis that all coefficients of the mean of time-varying covariates are 

jointly statistically equal to zero is rejected in all equations; this is in keeping with Mundlak’s 

approach and shows the presence of correlation between unobserved household fixed effects and 

observed covariates.   

The MVP model estimates contrast substantially across the four adoption equations, 

signifying the importance of separating individual adoption equations. In order to formally test 

this, we estimated a constrained specification with all slope coefficients forced to be equal. The 

likelihood ratio test statistic (χ2(188)= 4114, p=0.000) rejects the null hypothesis of equal-slope 

coefficients. This result indicates the heterogeneity in adoption of CSA practices and consequently 

supports separate analyses instead of aggregating them into one adoption variable. The null 

hypothesis of independence of the decisions to adopt the different CSA practices is tested by using 

a likelihood ratio test in which the restricted model forces off-diagonal covariance matrix terms to 
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zero. As expected, the resulting likelihood ratio test [χ2(6) = 197.78, p=0.000)] is statistically 

significant, indicating the rejection of the null hypothesis that the covariance of the error terms 

across equations are not correlated. Three of the estimated correlation coefficients (Rho) have 

positive signs and are statistically significant. This reveals that adoption decisions are made 

interdependently, i.e., that the probability of adopting a given practice is conditioned on whether 

or not another practice in the subset has been adopted. These results agree with earlier results of 

the conditional and unconditional adoption probabilities reported in Table 2. The significant cross-

correlations among the practices may have an important policy implication in that factors that 

affect the choice of a given practice can have spillover effects on other practices as well. This 

reveals that the adoption decision cannot be considered as an individualized decision but rather as 

part of an inclusive household strategy, and therefore it should be modeled as an interdependent 

household decision. The results from the MVP estimation reveal that there are a large number of 

factors that significantly influence the adoption of the different CSA practices. There are also 

substantial differences in the composition of factors that affect the adoption of each of the CSA 

practices. The fact that there are large numbers of factors and their heterogeneity implies there is 

no single bullet to put forward to enhance the adoption of the available climate smart practices. 

Land (total farm size in hectares), a variable depicting natural capital, is important in 

agricultural technology adoption models because it picks up the effect of household wealth on 

adoption decisions. Results from Table 4 show inconclusive results concerning the relationship 

between farm size and CSA practices. The land parameter is significant and positive in affecting 

the choice of inorganic fertilizer, which is an externally purchased modern input. The result is 

consistent with the notion that, under climate change, where risk and uncertainty are more 

prevalent, wealthier farmers are abler to undertake risk and thus more willing to use those modern 

inputs. On the other hand, the inverse relationship between farm size and use of cropping system 

diversification suggests that, under climate change, small land size can induce diversification that 

favors intensification in the system, such that improved soil fertility and water holding capacity 

increases yields and resilience to climate change. This result is consistent with earlier works by 

Teklewold et al. (2019) and Kassie et al. (2015) in Ethiopia. The result also suggests that cropping 

system diversification is pro-poor, in that rural households who are unable to afford purchased 

external farm inputs may be able to take advantage of these systems. 

Off-farm participation, remittance and household assets positively influence the probability 

of choice of modern seeds, revealing the role of liquidity constraints in the adoption of capital-

intensive inputs. The size of livestock holdings (in terms of TLU) is also a measure of household’s 
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wealth that may relax the financial constraints on the purchase of inorganic fertilizer. Livestock is 

also a source of manure, the major component of organic fertilizer.  

Our results indicate statistically significant and positive correlation between the fertilizer 

subsidy variable and adoption of inorganic and organic fertilizer. This result seems to imply that 

participation in the fertilizer subsidy program results in a crowding-in effect of these 

complementary soil fertility management practices; in other words, the use of inorganic fertilizer 

does not crowd out organic fertilizer. The result is consistent with Marenya and Barrett (2009) in 

Kenya, which suggests the role of fertilizer subsidy as a means of creating a synergistic relationship 

in providing organic and inorganic matter to the soil. 

Households who possess and use a mobile telephone are more likely to use organic fertilizer. 

This implies that availability of communication infrastructure and access to information related to 

markets and production is key to enhancing the use of climate change adaptation practices.  

However, it is worthwhile to note that ownership of a mobile phone may also be picking up a 

wealth or liquidity effect in the sense that those who own a mobile may also have more cash income 

to finance the purchase of technologies.  

By contrast, there is a negative effect of internet use on the choice of CSA practices. This 

may imply the limited role of internet access in the technology adoption process. 

Spatial distance to markets has a negative and significant effect on the choice of cropping 

system diversification, modern seeds and inorganic fertilizer. This is probably because distance 

increases the transaction costs to the market.  

The results also provide empirical evidence on the importance of climate variables in 

determining the choice of combination of CSA practices. We included the location dummy variable 

(at agro-ecological zone level) to account for possible heterogeneity in climatic situations, 

institutional service provision and other factors influencing adaptation strategies. The MVP result 

indicates significant differences across locations for each CSA strategy, suggesting CSA practices 

are location specific. Along these lines, the results further highlight the importance of rainfall and 

plot-level shocks in determining the adoption of CSA practices. The result shows that in areas and 

years which have pest shocks or climatic shocks, such as timing, amount and distribution of rainfall 

and temperature, it is more likely that the household shifts from mono-cropping to more climate-

smart agricultural practices such as cropping system diversification. This finding suggests that 

smallholder farmers who experience climate shock and pest incidence are using cropping system 

diversification as an adaptation strategy to mitigate these risks.  

The results also underline the significance of land tenure security and farm characteristics 

for the choice of CSA practices. As expected, the decision to use cropping system diversification 
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and organic fertilizer is more likely on more fragmented plots.  This is perhaps related to the 

transaction costs associated with management of the fragmented plots, particularly in transporting 

inputs and the difficulty of monitoring (Teklewold et al., 2013). We also found that land tenure 

influences the decision to apply improved crop seeds and organic fertilizer, which are more 

common on owner-cultivated plots than on rented in plots. The result is consistent with our 

expectation and also in agreement with previous related work in Ethiopia by  Kassie et al. (2015). 

Given the fact that the adoption of organic fertilizer contribute to crop growth in other ways in 

addition to supplying nutrients (Fairhurst, 2012), this inter-temporal aspect suggests that secure 

land tenure will positively impact adaptation decisions. Conversely, a lack of clear tenure rights 

removes incentives to make the typically long-run investments that maintain land in such a way 

that it is resilient to climate change (IFAD 2012). Finally, other bio-physical plot characteristics 

also condition the adoption decisions, suggesting the importance of considering these 

characteristics in promoting different types of CSA practices. 

4.2 Effects of Adoption 

The results of adoption of multiple CSA practices are presented in Table 6. To determine 

the average effects of adoption of various combinations of CSA practices on farm income, net farm 

income is compared to what it would have been if they had not adopted the practices. These are 

obtained through equations (5) and (7). The results are shown in Table 6, where columns A and B 

respectively present the actual net farm income and counterfactual outcomes.  Column C presents 

the average adoption net farm effects (ATT), computed as the difference between the above 

respective columns. The results reveal heterogeneity in the differences in income due to adoption 

of CSA practices and imply differences in returns to resources. 

In general, the results show that the adoption of any of the CSA practices provides higher 

net farm income compared with non-adoption (Table 6). The positive income effect is observed 

irrespective of whether the practices are adopted in isolation or in combination. In all 

counterfactual cases, farm households who actually adopted the given CSA practices would have 

obtained lower farm income if they had not adopted. The results highlight that, in spite of some 

heterogeneity in the effects depending on the type of CSA practices, the joint adoption of multiple 

CSA practices provides higher farm income compared with adoption of CSA practices 

individually. The gain in farm income from shifting from adoption of any of the individual CSA 

practices to all four practices is higher than the gain from shifting from one to two or three 

practices. The result is consistent with Teklewold et al. (2013) in Ethiopia, who found that adoption 

of a package of sustainable agricultural practices provides higher economic gains than individual 

or non-adoption.  
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The net farm income gains from adopting organic fertilizer, improved seeds, or cropping 

system diversification individually range from 7.2 to 8.2 thousand Naira4/ha. This is higher than 

the net farm income from non-adoption. Compared with the gain from adoption of individual 

practices, we found a potential additional gain of more than 45% of net farm income from adopting 

a combination of three of the above CSA practices. Similarly, the net farm income further increases 

to 21.2 thousand Naira/ha from complete adoption of all four practices. Figure 2 shows the net 

farm income effect of partial versus complete adoption. The result indicates an increase of farm 

returns with increasing the number of practices adopted. We found that, in general, farm income 

from adoption of the combination of all four CSA practices is significantly higher compared with 

farm income with partial adoption. In all counterfactual cases, farm households who actually 

adopted all four practices would have obtained significantly lower farm income if fewer practices 

were adopted. That is, the adoption gap in farm returns widens as the number of practices adopted 

decreases. The potential additional gains of farm income from complete adoption ranges from 6 to 

8 thousand Naira/ha relative to the case if adopters of all practices had instead adopted any practice. 

Similarly, the adoption effects further widen in the range of 12 to 13 thousands Naira/ha if adopters 

of all practices had instead adopted any two practices and from 12 to 27 thousand Naira/ha if they 

had adopted only one of the CSA practices5. This shows the synergistic relationship and positive 

effects of adoption intensity on farm income. The result agrees with Teklewold et al. (2019) in 

Ethiopia, who found a complementary relationship with a possible synergy among adaptation 

practices that could lead to co-benefits.  The result also shows that this is an important incentive 

for farmers to apply multiple adaptation practices, confirming the argument that the extent to which 

the impacts of climate change are felt depends in large part on the extent of adaptation (Gbetibouo, 

2009). 

5. Conclusion 

The objectives of this paper are to understand the incentives and constraints affecting 

households’ decisions to adopt multiple CSA – cropping system diversification, modern seeds, 

inorganic and organic fertilizer – either separately or jointly, and to investigate the impacts of 

adoption of a combination of these practices on net farm income. We developed a two-stage 

endogenous switching regression method using nationally representative panel household- and 

plot-level data sets coupled with spatial climate data in rural Nigeria. The method corrects for 

 
4 The current exchange rate is 1 USD=411 Nigerian naira. 
5 See Annex 1 for the statistics. 
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selection bias in adoption because the same unobserved factors (motivations and skills) that lead 

some farmers to adopt CSA practices might enable them to change their farm returns even without 

adjusting their adoptions. Our approach extends the existing body of knowledge by allowing for 

correlations across the CSA practices and by considering the impact of a combination of externally 

purchased intensification inputs (inorganic fertilizer and modern seeds) and knowledge-intensive 

and resource-conserving sustainable practices (cropping system diversification and organic 

fertilizer). 

Coefficient estimates of the multivariate probit model revealed that the likelihood of adoption 

of CSA practices is influenced by plot, household and agro-ecological characteristics. These 

include plot-level shocks, soil characteristics, market access, wealth, and demographic 

characteristics. This analysis of the role of these variables in determining the choice of a portfolio 

of practices can be used to design policies that enhance the climate change adaptation possibilities 

among farmers. For instance, the significance of tenure security in influencing the probability of 

adoption of CSA practices calls attention to the importance of securing property rights as an 

incentive in climate change adaptation. The significant relationship between agro-ecological zones 

and adoption of CSA practices implies the need for careful design and targeting of agro-ecological 

based combination of CSA strategies. 

The following conclusions can be derived. First, adoption of individual CSAs increases 

income compared with non-adoption. Second, adoption of multiple CSAs provides higher farm 

returns than adoption of individual practices. Third, the highest farm income was achieved when 

farmers adopted all practices jointly, rather than partial adoption.  

The results highlight that there is a complementarity between CSA practices in terms of 

adoption and in their synergistic effect to enhance farm income. This correlation among the CSA 

practices may have important policy implication in that adaptation options shouldn’t be considered 

independently and policy options should tailor packages of adaptation practices to specific areas. 

This result also suggests that policymakers should explicitly design strategies that enhance the 

adoption of externally purchased technological farm inputs jointly with the locally available 

knowledge-intensive land management options. 
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Table 1. The unconditional choice of the different climate smart agricultural (CSA) strategies 

  Wave  

2011 2013 2016 All 

Cropping system diversification (C) 81.65 83.33 80.00 81.66 

Improved seeds (V) 72.04 78.58 53.78 67.99 

Inorganic fertilizer (F) 38.78 37.73 41.90 39.50 

Organic fertilizer (O) 7.65 5.34 29.19 14.28 

 

 

Table 2. Binary triplets characterizing the joint and marginal probabilities of choice of climate smart agricultural 

strategies: Cropping system diversification (C), Inorganic fertilizer (F), Organic fertilizer (O) and Improved 

seeds (V), %. 

Choic

e (j) Combination of strategies (j) Definition 

Joint 

probabilit

y 

1 
)0I,0I,0I,0I( OFVC ====  None  5.42 

2 
)1I,0I,0I,0I( OFVC ====  Organic fertilizer only  0.38 

3 
)0I,1I,0I,0I( OFVC ====  Inorganic fertilizer only 2.23 

4 
)0I,0I,1I,0I( OFVC ====  Improved seed only 7.13 

5 
)0I,0I,0I,1I( OFVC ====  Cropping system diversification only 16.73 

6 
)1I,1I,0I,0I( OFVC ====  Inorganic & organic fertilizer 0.39 

7 
)1I,0I,1I,0I( OFVC ====  Improved seed & organic fertilizer 0.19 

8 
)1I,0I,0I,1I( OFVC ====  Cropping system diversification & organic fertilizer 4.41 

9 
)0I,1I,1I,0I( OFVC ====

 
Improved seed & inorganic fertilizer  3.04 

10 
)0I,1I,0I,1I( OFVC ====  Cropping system diversification & inorganic fertilizer 11.29 

11 
)0I,0I,1I,1I( OFVC ====  Cropping system diversification & improved seed 24.87 

12 
)1I,1I,1I,0I( OFVC ====  Improved seed, inorganic & organic fertilizer  0.09 

13 
)1I,1I,0I,1I( OFVC ====  Cropping system diversification, inorganic & organic fertilizer 4.74 

14 
)1I,0I,1I,1I( OFVC ====  Cropping system diversification, improved seed & organic fertilizer 1.76 

15 
)0I,1I,1I,1I( OFVC ====  Cropping system diversification, improved seed & inorganic fertilizer 16.27 

16 
)1I,1I,1I,1I( OFVC ====  

Cropping system diversification, improved seed, inorganic & organic 

fertilizer 
1.04 

Note: A ‘1’ indicates that the CSA practice is adopted, while a ‘0’ indicates that the practice is not adopted. 
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Table 3. The unconditional and conditional choice of the different coping strategies 

  CSA strategies  

 C V F O 

P(Ik = 1) 81.66 67.99 39.50 14.28 

P(Ik = 1|IC = 1) 100.00 68.15 41.19 15.79 

P(Ik = 1|IV = 1) 81.85 100.00 39.44 13.53 

P(Ik = 1|IF = 1) 85.18 67.89 100.00 19.71 

P(Ik = 1|IO = 1) 90.34 64.45 54.52 100.00 

P(Ik = 1|IF = 1 & IO = 1) 92.38 18.12 100.00 100.00 

P(Ik = 1|IV = 1 & IO = 1) 91.02 100.00 36.79 100.00 

P(Ik = 1|IV = 1 & IF = 1) 84.68 100.00 100.00 5.55 

P(Ik = 1|IC = 1 & IO = 1) 100.00 23.47 48.38 100.00 

P(Ik = 1|IC = 1 & IF = 1) 100.00 51.92 100.00 17.36 

P(Ik = 1|IC = 1 & IV = 1) 100.00 100.00 39.39 6.39 

P(Ik = 1|IV = 1 & IF= 1 & IO = 1) 92.12 100.00 100.00 100.00 

P(Ik = 1|IC = 1 & IF = 1& IO = 1) 100.00 18.03 100.00 100.00 

P(Ik = 1|IC = 1 & IV = 1& IO = 1) 100.00 100.00 37.17 100.00 

P(Ik = 1|IC = 1 & IV = 1& IF = 1) 100.00 100.00 100.00 6.03 

Ik is a binary variable representing the adoption status with respect to CSA strategies k (k = C, V, F & O).
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Table  4. Description and summary statistics of the variables used in the empirical estimation 

Variable Description 

All samples 

Adoption status 

Cropping system 

diversification Improved seeds Inorganic fertilizer Organic fertilizer 

Mean Std, Dev Mean Std, Dev Mean Std, Dev Mean Std, Dev Mean Std, Dev 

Dependent variable: Farm return, (‘000 NAIRA/ha) 84.55 101.39 81.04 98.84 85.74 106.34 77.27 69.26 67.79 49.69 
Household features                     

HH_Sex 1=if male headed household  0.87 0.34 0.87 0.34 0.88 0.33 0.92 0.28 0.91 0.28 

HH_Age Age of the household head, yrs 37.58 27.11 37.93 27.36 36.57 27.26 36.34 26.17 44.50 23.38 
Married 1=if household head is married 0.83 0.38 0.83 0.38 0.84 0.37 0.89 0.31 0.89 0.31 

Educlevel Education level of the head, yrs 10.00 13.98 10.09 14.06 8.88 12.76 11.78 15.61 14.06 17.56 

HHsize Number of household member  6.88 3.38 6.79 3.35 6.88 3.33 7.54 3.46 7.71 3.45 

Wealth                       

Farmsize Farm size, ha 9.34 178.63 8.44 161.94 6.46 96.35 16.02 269.21 8.37 127.46 

Offarm 1=if participated in off-farm activities 0.19 0.39 0.19 0.39 0.20 0.40 0.18 0.39 0.14 0.34 
Asset  Asset value (’000 NAIRA) 96.09 1037.50 97.37 1131.79 97.06 975.33 79.01 319.63 85.74 657.59 

TLU Tropical livestock unit 1.79 28.73 1.78 31.50 1.64 18.11 2.53 44.84 3.43 53.02 
Remittance 1=if household received remittances  0.03 0.16 0.03 0.17 0.03 0.16 0.03 0.18 0.04 0.19 

Fertsubsdy 1=if recieved fertilizer subsidy 0.01 0.12 0.02 0.13 0.01 0.12 0.03 0.16 0.04 0.20 

Credit 1=if borrowed money 0.18 0.38 0.18 0.39 0.21 0.40 0.18 0.39 0.11 0.31 
Access to information                     

Dist_road Distance to main road, km 9.70 11.28 9.65 11.18 10.08 11.52 10.42 12.06 9.41 11.18 

Dist_market Distance to main market, km 70.01 37.03 67.77 35.46 70.14 36.81 61.87 32.39 61.06 31.59 
Extension 1=if access to extension services 0.13 0.34 0.13 0.34 0.12 0.32 0.18 0.38 0.19 0.39 

Mobile 1=if own mobile 0.71 0.45 0.71 0.45 0.69 0.46 0.73 0.45 0.83 0.38 

Internet 1=if access to internet services 0.15 0.35 0.15 0.35 0.14 0.35 0.13 0.34 0.09 0.29 
Shock                      

Healthshock 1=if the household faces health (illness/death) shock  0.15 0.36 0.15 0.36 0.15 0.36 0.14 0.34 0.11 0.32 

Climatshock 1=if the household faces climate shock 0.11 0.31 0.11 0.31 0.11 0.32 0.13 0.34 0.10 0.30 
Pestshock 1=if the household faces pest attack shock  0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.01 0.11 

Farm features                      

Numbparcel  Number of parcels 5.46 2.87 5.79 2.88 5.45 2.86 5.39 2.82 5.69 2.88 
Tenure 1=if own the plots 0.86 0.35 0.86 0.35 0.86 0.34 0.85 0.36 0.82 0.38 

Plotdist  Distance from house to plots, km 2.45 25.79 2.37 25.79 2.41 25.21 2.48 25.99 1.43 17.57 

Plotslop  Slope of the plot, % 2.97 2.77 2.95 2.73 2.90 2.67 2.58 2.31 2.22 1.66 
Plotelevaton  Elevation of the plot, m 300.88 201.71 302.80 199.11 300.41 203.79 375.25 230.10 381.69 176.72 

Plotwetness  Plot potential wetness index 14.55 2.74 14.53 2.66 14.57 2.75 14.67 2.66 14.89 2.82 

Climate                       
Temprature  Mean daily temperature, 0C 26.33 0.96 26.32 0.94 26.35 0.99 26.18 1.16 26.32 0.98 

Precipitation  Mean annual rainfall, mm 

1418.8

9 593.23 

1419.9

4 596.75 

1410.7

0 592.09 

1234.2

3 553.06 

1113.5

6 580.23 
Semiarid  1= if Tropic-warm/semiarid agro-ecological zone 0.35 0.48 0.36 0.48 0.35 0.48 0.54 0.50 0.67 0.47 

Subhumid  1= if Tropic-warm/subhumid agro-ecological zone 0.57 0.50 0.56 0.50 0.56 0.50 0.39 0.49 0.28 0.45 

Humid  1= if Tropic-warm/humid agro-ecological zone 0.07 0.26 0.07 0.25 0.07 0.26 0.04 0.21 0.05 0.21 

Number of observation 34,145 27,882 23,215 13,486 4,875 
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a. Cropping system diversification      b. Improved seeds 

  
c. Inorganic fertilizer       d. Organic fertilizer  
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Fig 1. Cumulative distribution for the impact of adaptation practices on farm net income
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Table  5. Parameter estimates of the multivariate probit model with Mundlak approach – choice of CSA 

strategies 

Variables 

Cropping system 

diversification (C) Improved seeds (V) Inorganic fertilizer (F) Organic fertilizer (O) 

Coefficient 

Standard 

Error Coefficient 

Standard 

Error Coefficient 

Standard 

Error Coefficient 

Standar

d Error 

Household features         

HH_Sex 0.056 0.080 0.128* 0.073 -0.178* 0.096 -0.092 0.157 

HH_Age 0.002* 0.001 -0.000 0.001 -0.007*** 0.002 0.000 0.002 

Married -0.061 0.070 -0.045 0.065 0.254*** 0.084 0.073 0.144 

Educlevel 0.002* 0.001 -0.007*** 0.001 0.005*** 0.001 0.000 0.001 

HHsize -0.005 0.014 -0.029 0.020 0.007 0.019 0.026 0.026 

Wealth         

Farmsize -0.0001** 0.0001 -0.0001 0.0001 0.0001*** 0.0001 -0.0001 0.0001 

Offarm -0.007 0.041 0.078* 0.046 -0.054 0.051 -0.084 0.079 

Asset -0.0001* 0.0001 0.0001** 0.00001 -0.0001 0.0001 -0.0001 0.000 

TLU 0.002 0.001 -0.002 0.002 0.006** 0.003 0.001*** 0.000 

Remittance 0.079 0.136 0.297** 0.124 0.221 0.154 0.044 0.197 

Fertsubsdy -0.033 0.126 -0.029 0.139 0.448*** 0.135 0.808*** 0.146 

Credit 0.102** 0.040 0.218*** 0.040 0.073* 0.044 0.087 0.063 

Access to 

information         

Dist_road 0.001 0.001 0.003* 0.001 0.001 0.002 -0.001 0.002 

Dist_market -0.003*** 0.000 0.000 0.000 -0.006*** 0.001 -0.003*** 0.001 

Extension 0.179*** 0.049 -0.202*** 0.042 0.231*** 0.049 -0.006 0.061 

Mobile -0.030 0.032 0.044 0.042 0.054 0.044 0.209*** 0.067 

Internet -0.130*** 0.042 -0.141*** 0.054 -0.109** 0.054 -0.296*** 0.092 

Shock         

Healthshock -0.015 0.044 -0.075 0.055 -0.060 0.052 -0.057 0.083 

Climatshock 0.064* 0.025 -0.063 0.064 -0.024 0.062 -0.087 0.091 

Pestshock 0.272** 0.122 -0.138 0.146 -0.089 0.132 -0.256 0.244 

Farm features         

Numbparcel 0.165*** 0.011 -0.004 0.006 0.006 0.008 0.050*** 0.009 

Tenure -0.013 0.040 0.084** 0.037 -0.089 0.046 -0.368*** 0.056 

Plotdist -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.001 0.001 

Plotslop -0.002 0.005 -0.014*** 0.004 -0.029*** 0.006 -0.044*** 0.010 

Plotelevaton 0.0001 0.0001 -0.000* 0.000 0.002*** 0.0001 0.001*** 0.000 

Plotwetness -0.009* 0.004 -0.003 0.005 -0.010* 0.005 -0.004 0.008 

Climate         

Temprature -0.377*** 0.142 -0.274 0.229 -0.011 0.115 -0.170 0.290 

Precipitation -0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Semiarid 0.950*** 0.156 -0.702*** 0.138 -0.328 0.277 0.596** 0.256 

Subhumid 0.339** 0.155 -0.727*** 0.141 -0.886*** 0.279 -0.065 0.265 

Humid -0.247 0.176 -0.628*** 0.160 -1.181*** 0.315 0.212 0.298 

Wave         

Year – 2011 0.177** 0.076 0.419*** 0.076 -0.391*** 0.090 -0.881*** 0.114 

Year – 2013 0.121*** 0.040 0.586*** 0.046 -0.059 0.046 -1.110*** 0.067 

Constant -0.224 0.782 0.224 0.708 -1.757* 0.940 -6.253*** 1.357 

RHO:         

Organic fertilizer 0.154*** 0.020 0.062*** 0.023 0.028 0.027   

Inorganic fertilizer 0.073*** 0.018 0.009 0.017     

Improved seeds 0.012 0.015       

Joint significance of 

time varying 

variables, χ2(8) 78.10*** 20.54* 13.74 20.80* 

Observations 34145        

Model chi-square Wald χ2(188) = 34145; Prob > χ2 = 0.000 

Likelihood ratio test RHOC,V = RHOC,F = RHOC,O = RHOV,F = RHOV,O = RHOF,O =χ2(6) = 197.78; Prob > χ2 = 0.000 
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Note: ***, ** and * denote significance at 1%, 5% and 10%. All regressions include household time average variables. Robust 

clustered standard errors at the household level.
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 Table 6. Average expected farm return outcome with adoption on different CSA strategies 

Strategies Actual farm return if 

household did adopt 

(A) 

Counterfactual farm return if 

household didn’t adopt 

(B) 

Adoption Effects 

(C) 

Organic fertilizer only  54460.27 (204.50) 46175.37 (2953.27) 8284.90 (2960.34)*** 

Inorganic fertilizer only 38247.75 (6476.64) 37358.63 (2562.69) 889.12 (6965.22) 

Improved seed only 40684.86 (789.03) 33456.80 (584.80) 7228.06 (982.12)*** 

Cropping system diversification only 42836.86 (650.87) 34880.44 (412.78) 7956.42 (770.72)*** 

Cropping system diversification & organic fertilizer 66891.69 (2858.63) 50172.85 (847.25) 16718.84 (2981.54)*** 

Improved seed & inorganic fertilizer  48647.74 (873.56) 33099.62 (974.94) 15548.12 (1309.05)*** 

Cropping system diversification & inorganic fertilizer 49906.52 (530.86) 41185.66 (898.16) 8720.86 (1043.31)*** 

Cropping system diversification & improved seed 49043.15 (313.29) 33535.99 (252.73) 15507.16 (402.52)*** 

Cropping system diversification, inorganic & organic fertilizer 61303.03 (83.18) 45417.25 (1035.00) 15885.78 (1038.33)*** 

Cropping system diversification, improved seed & organic fertilizer 61895.69 (1484.04) 46988.48 (671.92) 14907.21 (1629.07)*** 

Cropping system diversification, improved seed & inorganic fertilizer 55059.46 (513.01) 38994.90 (310.20) 16064.56 (599.50)*** 

Cropping system diversification, improved seed, inorganic & organic fertilizer 68122.19 (1345.19) 46949.75 (753.52) 21172.44 (1541.86)*** 

Note: Numbers in parentheses are standard errors; *. ** and *** indicate statistical significance at 10%, 5% and 1%  level, respectively. 
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Figure 2. Expected farm return and adoption effects of different CSA strategies conditional on complete adoption   
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Annex 1. Average treatment effects of the treated - expected farm return effects of adoption on different CSA strategies conditional on complete adoption 

Strategies Farm returns Adoption Effects 

Cropping system diversification, improved seed, inorganic & organic fertilizer 68122.19 (1345.19)   

Cropping system diversification, improved seed & inorganic fertilizer 62092.09 (1326.68) 6030.10 (1889.34)*** 

Cropping system diversification, improved seed & organic fertilizer 60352.56 (1444.22) 7769.63 (1973.65)*** 

Cropping system diversification, inorganic & organic fertilizer 61415.66 (46.99) 6706.53 (1346.01)*** 

Cropping system diversification & improved seed 55227.50 (1144.36) 12894.69 (1766.10)*** 

Cropping system diversification & inorganic fertilizer 56044.96 (821.97) 12077.23 (1576.44)*** 

Improved seed & inorganic fertilizer  52908.60 (1023.22) 15213.59 (1690.13)*** 

Cropping system diversification & organic fertilizer 55424.31 (17105.14) 12697.88 (17157.95) 

Cropping system diversification only 56024.48 (850.69) 12097.71 (1591.61)*** 

Improved seed only 47100.01 (731.96) 21022.18 (1531.44)*** 

Inorganic fertilizer only 46846.81 (1327.08) 21275.38 (1889.62)*** 

Organic fertilizer only 40917.44 (24.94) 27204.75 (1345.42)*** 

Note: Numbers in parentheses are standard errors; *. ** and *** indicate statistical significance at 10%. 5% and 1%  level, respectively 

 

 

 

 


