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A B S T R A C T   

The Sustainable Development Goal (SDG) 7 stresses the importance for economies around the world to double 
their efforts in improving energy efficiency. Energy efficiency improvements have been found to trigger eco
nomic growth, albeit empirical evidence to support this claim remains mixed. In a world of widening inequality, 
how income inequality dynamics affect the growth and energy efficiency nexus is critical, yet empirical research 
investigating the role of income inequality is lacking. This study addresses this concern by examining the 
moderating role of income inequality in the economic growth – energy efficiency nexus. The study is based on an 
unbalanced yearly panel dataset for 51 African countries from 1991 to 2017. We measure energy efficiency using 
the stochastic frontier analysis technique and apply the two-step generalized method of moments (GMM) 
technique to examine the direct and indirect effects (moderating through income inequality) of energy efficiency 
on economic growth. We conduct several robustness checks to ensure consistent estimates of the parameters. We 
find that, directly, improving upon energy efficiency triggers economic growth, but this is compromised in 
economies with high-income inequality. The estimated conditional total effect of energy efficiency on economic 
growth is lower for countries with higher income inequality compared to countries with lower income inequality. 
By implication, reducing income inequality could be one effective channel through which energy efficiency can 
trigger economic growth.   

1. Introduction 

The aim of this study is to examine the effect of energy efficiency 
(EE) improvements on economic growth, considering the moderating 
role of income inequality in 51 African countries. Africa is the world’s 
second fastest-growing region with an average real GDP growth rate of 
4.5% over the period 2000–2019 (AUC/OECD, 2021). The continent is 
projected to grow at an average growth rate of 4.2% by 2025 
(AUC/OECD, 2021). This comes against the backdrop of increasing en
ergy demand and environmental problems like high traffic emissions 
and pollution from the use of unclean cooking fuels in Africa (Fayiga 
et al., 2018). Energy demand has increased by about 50% since 2000, 
reaching 752 million tonnes of oil equivalence in 2014 and more than 
810 million tonnes of oil equivalence in 2018 (IEA, 2019). Estimates 
show that Africa’s energy demand will further increase by 85% from 

2010 to 2040 (IEA, 2013). However, public and private investment1 in 
energy supply infrastructure in Africa is inadequate to meet the rising 
demand, creating energy deficit. Consequently, about 595 million peo
ple in Africa have no access to electricity irrespective of their income 
levels (IEA, 2019). The energy deficit, access and the environmental 
quality situation requires, among other things, Africa to manage the 
level of energy consumption through technological innovation, energy 
conservation and efficient demand management techniques (Ali et al., 
2020). To this end, the United Nations Sustainable Development Goal 
(SDG) 7 requires countries around the world to double their efforts in 
energy efficiency (EE) improvements. 

Although Africa’s EE improvements are below the global average2 of 
1.7%, the UN progress report on SDG7 reports of consistent improve
ments in EE in Africa, averaging 1.3%, between 2010 and 2017 (IEA 
et al., 2020). Studies by Adom (2019), Jebali et al. (2017) and Chang 
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1 In 2018, only $100billion representing 5.5% of global total energy investment was in the energy sector. Of this, $70billion, $13billion and another $13billion 
were invested into fossil fuel, renewable energy and electricity networks respectively (IEA, 2019).  

2 The most improved region, Asia, averages 3.3% between 2010 and 2017. 
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(2016) also corroborate this. The IEA’s multiple-benefits approach to EE 
policy asserts that analysing the impact of EE should go beyond the 
traditional effects of reduced energy demand and lower greenhouse 
emissions to estimating its impact across different spheres and on the 
whole economy (IEA, 2019b). Sustainable energy policies, like EE, are 
more likely to succeed if they maximise, where they exist, positive 
synergies with other socio-economic outcomes like economic growth 
(Ahuja and Tatsutani, 2009). Literature on the macroeconomic effects of 
EE in Africa remains limited (Ohene-Asare et al., 2020), especially after 
the promulgation of the SDGs. Consequently, evidence on the question 
of whether the improvements in EE draw any positive synergies with 
economic growth in Africa remains scanty. Against the background of 
rising income inequality in Africa, how income inequality dynamics 
affect EE-economic growth nexus is critical, yet empirical research 
investigating the role of income inequality is also lacking. The motiva
tion of this study is to fill these gaps. Empirical evidence on the 
growth-inducing effect of EE would emphasize whether environmental 
protection measures are detrimental to economic growth or otherwise3 

and could provide an incentive for policy makers to adopt more EE 
measures. This is important because Africa needs strong economic 
growth to attain SDG8 and, at the same time, the continuous upsurge in 
Africa’s energy consumption, especially from non-renewable sources 
(Ohene-Asare et al., 2020), poses challenges to the environment for 
which EE measures become necessary for sustainable economic growth. 
Understanding the growth-inducing effects of EE would also help policy 
makers to fully account for the benefits and costs of EE measures. Ulti
mately, our study contributes to the quest of the United Nations to 
identify and enhance, where they exist, positive synergies among the 
Sustainable Development Goals (SDGs). 

The classical, neoclassical, endogenous growth, new endogenous 
growth and catch-up theories of economic growth provide the theoret
ical link between economic growth and EE, albeit implicitly. Growth 
theories stress the importance of technological progress to output 
expansion or economic growth (Lakhera, 2016). Lipsey et al. (2005) 
have concluded that most economic growth is due to general-purpose 
technologies, which could involve efficient production, transmission 
and utilisation of energy to do useful work (Ayres and Warr, 2009). 
Technological progress improves the quality of inputs, reduces cost 
significantly, and maximises output. Since energy is an input in the 
production process, technological progress or investment in innovation 
improves the quality of energy inputs, reduces the associated cost, and 
frees up resources to employ other factors of production to increase 
output. 

However, the conventional view (advocated by neoclassical and 
endogenous growth theories) downplays the significance of EE as a key 
driver of economic growth. According to this view, energy cost is an 
insignificant share in the total cost (Sorrell, 2009). Therefore, EE im
provements can only produce a mild impact on economic growth. One 
possible explanation could be that most of these growth theories did not 
consider energy as an explicit input in the production process, but the 
events unfolding after the 1970s have changed this view about energy. 
Smulders and de Nooij (2003) provided a theoretical model of the link 
between energy conservation policies and economic growth. They found 
that energy conservation policies reduce per capita income. However, a 
reduction in energy input through induced technical change can facili
tate improvement in energy-related technology and partially mitigate 
the cost of energy conservation policies. Thus, contrary to the hypothesis 
of Porter and van der Linde (1995) (which states that well-designed 
environmental policies, including EE, can trigger innovation and pro
duce a Pareto optimal situation by fostering productivity, 

competitiveness, profits and hence economic growth), induced technical 
innovation cannot lead to a ‘win-win’ situation. 

In contrast to the conventional view, the ecological economics view 
asserts that, over the past two decades, the increasing availability of 
high-quality energy inputs has been the key driver of economic growth 
(Compton, 2011). Ayres and Warr (2009) explicitly state that EE im
provements have been one of the major (or perhaps the major) drivers of 
economic growth since the industrial revolution. These 
anti-conventional view assertions could be strongly rooted in the Porter 
and van der Linde (1995) hypothesis. 

Empirically, there seems to be some level of consensus on the posi
tive effects of EE on economic growth in developed economies (Razzaq 
et al., 2021; Marques et al., 2019; Bataille and Melton, 2017; Rajbhan
dari and Zhang, 2018), where to some extent, successful decoupling of 
economic growth and the environment has occurred. Rajbhandari and 
Zhang (2018) found that lowering energy intensity (signifying im
provements in EE) is associated with long-run economic growth in 
high-income countries. Bataille and Melton (2017) found that, in Can
ada, improvements in total EE increased GDP by 2 percent. However, the 
evidence looks mixed and scanty for developing economies. For 
example, while Akram et al. (2021), Ohene-Asare et al. (2020), Heun 
and Brockway (2019), Cantore et al. (2016), Bayar and Gavriletea 
(2019), Go et al. (2019), Hu et al. (2019) and Rajbhandari and Zhang 
(2018) all found the effect of EE on economic growth to be positive, 
other studies such as Pan et al. (2019), Mahmood and Kanwal (2017) 
and Sinha (2015) failed to establish any meaningful effect of EE im
provements on economic growth for developing economies. Notably, 
only Ohene-Asare et al. (2020) exclusively covered 46 African countries. 

The controversy in the case of developing economies could be 
explained in two ways. First, since, in developing economies, a huge 
amount of production and consumption of energy is needed to meet 
developmental goals (Esen and Bayrak, 2017), Dercon (2012) asserts 
that environmentally friendly growth policies (such as EE) are more of a 
threat than an opportunity to promote growth and development. 
Khazzoom (1980) has criticised the pollution- (and energy-) reducing 
effect of EE, noting that EE is not cost-effective in reducing pollution 
since improvements in EE, which reduce the implicit cost of energy, also 
trigger higher energy demand and hence higher pollution; something 
referred to in the literature as the rebound effect. Thus, the rebound ef
fect, which can be an exogenous response to EE improvements or 
induced by a policy, can negate the gains achieved from EE (Gillingham 
et al., 2016). 

Second, in most developing economies, the burden of energy cost is 
very high, especially on the poor, who form a significant number of the 
total population in developing economies (Njiru and Letema, 2018). 
Therefore, EE improvements can trigger significant cost savings on en
ergy, which can free up resources for other productive activities. How
ever, some of these activities may be energy intensive, and this could 
also raise concerns about a possible rebound effect. For instance, energy 
cost savings invested in energy-intensive productive activities like food 
and related support activities can cause an increase in energy con
sumption and pollution especially with the massive use of unclean 
cooking fuels in Africa (Fayiya et al., 2018; Conti et al., 2016). Invest
ment of energy cost savings in other energy-intensive productive in
dustries like paper manufacturing, printing, basic organic and inorganic 
chemicals, etc (Conti et al., 2016, pg. 113) could also produce similar 
effects. The overall effect on energy consumption and pollution would 
depend on the size of the rebound effect (Adom and Adams, 2020). 
Nevertheless, Porter and van der Linde (1995) emphasized that savings 
made on energy cost can trigger investment in technological innovation 
and improve productivity in the economy. Of course, operating through 
the supply side, EE can improve productivity as producers deploy more 
energy efficient production techniques. 

From the above, empirical evidence on the effect of EE on economic 
growth remains controversial. There are two possible reasons that can 
explain the sources of this controversy in the literature. The first 

3 This debate re-emerged in 2017 when President Trump of the United States 
of America (USA) rolled back some environmental regulations of the Clean Air 
Act of the USA, arguing they compromise business interests and, for that matter, 
economic growth. 
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concerns how EE is measured. Most of the studies on the subject used the 
popular energy intensity indicator (i.e., energy consumption per GDP) as 
a measure of EE. However, especially at the macro level, this has been 
criticised since changes in energy intensity could reflect environmental 
factors, changing energy price, population density and changing eco
nomic structure (Adom et al., 2018; Zhang and Adom, 2018). Thus, 
interpreting lower energy intensity to mean improvement in EE, as it is 
currently done in the literature, may be flawed since this could mean 
something different from technological progress. Other studies used 
proxies like the reduction in fossil-fuel energy waste (Sinha, 2015), 
thermodynamic efficiency4 (Heun and Brockway, 2019), total factor 
energy production efficiency (Pan et al., 2019) and intended energy 
reductions (Barker et al., 2009) to measure EE. Ohene-Asare et al. 
(2020) estimated the total factor EE using Data Envelopment Analysis 
(DEA), which can lead to less precise EE scores. However, none of these 
approaches is capable of decomposing energy efficiency into transient 
and persistent components. We applied the stochastic frontier analytic 
(SFA) technique to estimate EE.5 

Second, EE decision is endogenous, as it is driven by economic, po
litical, social and institutional factors. This creates potential identifica
tion problems. Liu et al. (2020) showed that, at least, there is a reverse 
causality from economic growth to EE indicating a possible endogeneity 
of EE. In developing economies, where poverty rates are high, wide
spread income inequalities could impede investment decisions in EE. 
The high upfront cost of investment in energy-efficient equipment is 
very difficult to bear for low-income households (Simcock et al., 2017). 
Galvin and Sunikka-Blank (2018) assert that widespread inequalities in 
income affect household energy consumption behaviours, such as 
investing in EE. Liu et al. (2020), in a recent study, estimated the effects 
of income inequality on EE (estimated using data envelope analysis) for 
33 Belt and Road Initiative (BRI) countries. Their results revealed an 
inverted U-shaped effect of income inequality on EE for middle- and 
low-income BRI countries and a U-shaped effect for high-income BRI 
countries. Thus, although inequalities in income could influence EE 
behaviours, the mode of transmission is not clear. 

Increased income inequality can provide an outlet for innovative 
assets and processes that promote EE. For example, a sizeable market is 
required to meet the demand for pollution-free goods and innovative 
manufacturing processes. Since these products are costly, richer 
households will advance towards the development of this market. Thus, 
increased income inequality in this case would complement the eco
nomic growth–inducing effect of EE. On the other hand, it is possible 
that increased income equality can either complement or compromise 
the growth-inducing effect of EE. Given that the poor consume poor 
quality goods, a redistribution of income away from the rich towards the 
poor implies that the consumption of goods by the poor would increase 
more than the proportion of reduction in the consumption of the rich. 
This is possible because the poor would spend on poor-quality goods, 
which are mainly less expensive. Since energy-efficient appliances and 
solutions are costly, the poor will reach out for less energy-efficient 
products, and this would compromise the growth-inducing effect of 
EE. However, increased income equality would complement the growth- 
inducing effect of EE if it enables the poor to reach out for innovative 
energy-efficient appliances and solutions. This is possible, especially in 
an environment where policy interventions, like restrictions on the 
importation of energy-inefficient products and heightened education or 
sensitization on the adoption of EE encourage the substitution of less 
energy-efficient solutions for more energy-efficient ones. Clearly, in
come (in)equality can influence the nature of the relationship between 
EE and economic growth, as it can complement or compromise the 
growth-inducing effect of EE. Certainly, omitting income inequality 

from the model could cause bias in the estimates. However, empirical 
studies in the literature provides little information about how income 
inequality affects the direction and strength of the EE-economic growth 
nexus. 

This study makes two contributions to the literature on the economic 
growth–EE nexus. First, we provide a new empirical evidence on the 
rather scanty literature on the growth-inducing effects of EE in Africa 
using an approach that robustly addresses the endogeneity problem of 
EE. We apply the GMM technique, which relies on lag instruments of 
endogenous variables to improve the identification of the causal effect of 
EE unlike previous studies. Second, and perhaps the main contribution, 
this study makes the first attempt to empirically investigate the effect of 
income inequality on the growth-induced effect of EE. We condition the 
effect of EE on the level of income inequality. This helps to distinguish 
between the direct and the moderated effects of EE on economic growth. 
This also opens up new insights and informs policy makers in Africa to 
design the necessarily income distribution policy interventions to com
plement the growth-inducing effect of EE. Income inequality is identi
fied as a decisive force that translates into marked differences in energy 
consumption and emissions (Oswald et al., 2020). This is largely because 
different purchasing power makes people use different goods and ser
vices with different energy requirements and EE. Yet, income inequality 
has received limited research, policy, and political attention until it 
became the overarching goal of the United Nations’ 2030 Agenda for 
Sustainable Development in September 2015 (Odusola et al., 2019, 
pg.3). Africa is the most unequal region in the world (Gomis et al., 2020. 
pg70). Income inequality in Africa, is not only high and rising, but also 
variable ((Odusanya and Akinlo, 2020; Odusola et al., 2019; Anderson 
and McKay, 2004, AUC/OECD, 2018), amidst the reported improve
ments in EE in Africa (IEA et al., 2020). Based on the available Gini 
coefficients (as the measure of within-country income inequality) in 
2014, 10 out of the 19 extremely unequal countries6 globally are in 
Africa (Odusola et al., 2019, pg.157). Compared to the other developing 
countries’ average Gini coefficient of 0.39, Africa’s average is 0.43 with 
a range between 0.31(Egypt) and 0.65 (South Africa – the world’s most 
unequal country) (Odusola et al., 2019, pg.54). Consequently, Africa’s 
Agenda 2063 aims at strong, sustainable and inclusive growth that curbs 
inequality to further poverty alleviation (AUC/OECD, 2018). This makes 
a case to examine the role of income inequality dynamics in any eco
nomic growth-inducing process of the continent. In addition, we control 
for many related socio-economic factors to improve the identification of 
the causal effect from EE to economic growth. 

We find that improving EE directly triggers economic growth, but its 
effect is negatively moderated downwards by widespread income 
inequality. The results show that the total growth effect of EE is higher 
for economies with minimal income inequality but lower for economies 
with maximum income inequality. By implication, higher income 
inequality could impose significant constraints on the growth-induced 
effect of EE improvements. Thus, reducing income inequality could 
facilitate investment decisions in EE and hence lead to economic growth. 
Section 2 discusses the data and method. Section 3 presents and dis
cusses the results. Section 4 concludes with policy recommendations. 

2. Methods and data 

2.1. Measurement of energy efficiency 

This study uses the Stochastic Frontier Approach (SFA) to estimate 
the energy efficiency scores. Compared with the non-parametric DEA, 
the SFA is superior in dealing with measurement errors, data uncertainty 
and atypical (outlier) observations in the data, which are embedded in 
the EE scores obtained based on DEA (Mutz et al., 2017). SFA is also able 

4 Similar to energy conversion efficiency: it is the aggregate primary-to-useful 
exergetic efficiency (Heun and Brockway, 2019).  

5 See Section 2.1 on the reasons for the choice of SFA over DEA. 

6 South Africa, Namibia, Botswana, Central Africa Republic, Comoros, 
Zambia, Lesotho, Eswatini, Guinea Bissau and Rwanda. 
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to handle omitted variable bias problem unlike the DEA (Hu et al., 
2019). Lastly, by accounting for the random error term, the SFA can 
decompose energy efficiency scores into short-term and long-term 
components, which is not possible with DEA. 

There are three stages involved in measuring EE: (i) defining a 
normative benchmark, (ii) observing the actual state of the world, and 
(iii) reporting the degree of deviation of the observed state of the world 
from the normative benchmark (Malghan, 2019). Our estimate of EE 
follows the approach of Filippini and Hunt (2011). Filippini and Hunt 
(2011) proposed the estimation of a single conditional energy input 
demand frontier function (see Equation (1)), where the dependent var
iable is energy demand, the optimal energy use is denoted by the energy 
demand frontier, f(pit , yit, xit; θ)evit − uit , where ‘e’ is the Euler’s mathe
matical constant; and the deviation from the optimal energy use (a 
measure of energy inefficiency) is denoted by uit. ‘vit’ is the noise term 
that is two-sided and normally distributed, while uit is non-negative 
half-normally distributed. Thus, the error-term (εit) in this model is a 
two-composite error term with a noise term and an inefficiency term, ‘p’ 
is the price of energy, ‘y’ is the income measured as real GDP per capita 
(Y), ‘x’ captures other factors that affect energy demand, and θ repre
sents the energy demand elasticities. Following the works of Adom 
(2019b), Filippini and Hunt (2011), Zhang and Adom (2018), and Adom 
et al. (2018), we include in the ‘x’ vector population density (Popden), 
human capital development (Hcdi), urbanization (Urbnzn), a financial 
development index (Findev), foreign direct investment (FDI), share of 
industry output (indsha) in GDP and temperature (Temp). 

We assume a Cobb-Douglas energy demand function, f(pit, yit ,xit; θ)
= Apθp

it yθy
it xθx

it , and take the logarithmic transformation, which produces 
Equation (2), where the dependent variable, ed

it, is energy demand and 
εit = vit − uit . 

ed
it = f (pit, yit, xit; θ)evit − uit ​ where θp < 0 ​ and θy > 0 (1)  

lned
it =α + θplnpit + θylnyit + θxlnxit + vit − uit (2) 

Technical EE (efit) is computed as the exponential of negative uit. 
That is, 

efit = exp(− uit) (3) 

Since the inefficiency term is non-negative, Equation (3) is bounded 
between 0 and 1, where 1 represents a fully energy-efficient country and 
0 otherwise. Filippini and Zhang (2016), Kumbhakar et al. (2014), 
Alberini and Filippini (2018), and Adom et al. (2018) have emphasized 
the importance of decomposing the EE index into a time-varying 
component (referred to as transient EE in the literature) and 
time-invariant component (referred to as persistent EE). As noted in 
these studies, this distinction has important implications for policy 
design by showing the major source of inefficiency, and the intensity 
with which a government should adopt policies with a long-term 
orientation vis-a-vis those with a short-term orientation. Very high 
persistent energy inefficiency relative to transient energy inefficiency 
means that energy inefficiency will persist for the country over time, if 
there is no change in government policy (Kumbhakar et al., 2014). 
However, if the residual energy inefficiency is very high relative to the 
persistent energy inefficiency, then it means that inefficiency is caused 
by something, which is unlikely to repeat in the next period. Accord
ingly, we can further define the inefficiency term as the sum of the 
transient (τit) and persistent (ui) components (see Equation (4)). 
Substituting Equation (4) into Equation (2) produces Equation (5). 

uit = τit + ui (4)  

lned
it =α + θplnpit + θylnyit + θxlnxit + vit − τit − ui (5) 

Overall EE is evaluated as the product of transient and persistent EE. 
The fixed effect model proposed by Schmidt and Sickles (1984) esti
mates time-invariant EE, considering country-specific effects as 

inefficiency. Therefore, it suffers from model misspecification. The true 
fixed effects model by Greene (2005) and Chen et al. (2014) rather as
sumes the time-varying efficiency term. While their method controls for 
country-specific effects, it ignores the persistent part of EE. Thus, studies 
that apply the fixed effect and true fixed effect models to independently 
estimate persistent and transient EE, respectively, suffer from some 
biases. 

Consequently, this study adopts the Kumbhakar et al. (2014) 
approach to decompose EE into transient and persistent components 
while still controlling for unobserved country-specific heterogeneity. 
The adopted approach decomposes the error component into four 
sub-components: the country’s latent heterogeneity [ϑi] (Greene, 2005), 
which has to be separated from the inefficiency term, the transient 
technical inefficiency (τit), the persistent technical inefficiency (ui) and 
the noise term (vit). Thus, Equation (5) can be written as Equation (6). 

lned
it =α + θplnpit + θylnyit + θxlnxit + vit − ui − ϑi − τit (6) 

The Kumbhakar et al. (2014) method is a four-step approach. Based 
on Hausman test, the first step involves the estimation of fixed or 
random effects panel model (see Table A.1 in Appendix A). The second 
step involves estimating the time-varying (transient) EE. The third step 
involves estimating the time-invariant (persistent) EE using the sto
chastic frontier model. The final step is to estimate the overall EE as a 
product of the transient and the persistent EE (Kumbhakar et al. (2015). 
Schmidt and Sickles (1984) propose a test of skewness to determine the 
type of stochastic frontier to construct for the estimation of EE. The test 
is based on the null hypothesis of no skewness versus the alternative 
hypothesis of positive or negative skewness (see Adom and Adams, 
2020a). For a cost-type stochastic frontier, the residuals after the OLS 
estimation of the energy demand function should be positively skewed. 
On the other hand, for a production-type stochastic frontier, the distri
bution of OLS residuals should be negatively skewed. The results of the 
test, reported in Table 1, support the latter one. 

2.2. Specification of the empirical growth model 

This study adopts the theoretical underpinning of Howarth (1997) 
summarized in a functional form as Equation (7) where y* is the 
steady-state output per worker, s is the share of output devoted to capital 
investment, ef is energy efficiency and g is population growth. Thus, we 
specify the baseline economic growth model as Equation (8), where yit is 
the dependent variable (i.e. real GDP per capita); ef , s and g are the 
regressors representing energy efficiency, capital formation and popu
lation growth, respectively, with βef , βs and βg being the respective 
economic growth elasticities of the regressors, and εit is the error term. 
The subscripts i and t represent individual countries and time in years, 
respectively. Basically, equation (8) shows that economic growth is 
endogenously determined by energy efficiency, capital formation and 
population growth. 

y* = f (s, ef , g) (7)  

lnyit =α + βef lnefit + βslnsit + βglngit + εit (8) 

The distribution of income in any economy affects economic growth 
and EE. Income inequality can either complement or compromise the 
growth-inducing effect of EE, as discussed earlier in this study. This 
suggests that income inequality may have a moderating role with EE in 
Equation (8). Therefore, we also include income inequality (IE) and its 

Table 1 
Skewness test of energy demand function (Equation (6)).  

Skewness Pr(Skewness) Kurtosis Pr(Kurtosis) Joint Chi-square test 

− 0.6606 0.0000 2.7677 0.1754 48.47*** 

***p < 0.01, **p < 0.05, *p < 0.1. 
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interaction with EE (lnefit*lnIEit) in the model to analyze the conditional 
(i.e. moderated by income inequality) effects of EE on economic growth. 

EE may also be correlated with both time-invariant and time-varying 
factors that affect economic growth. For example, tax and pricing re
gimes as well as globalization may affect EE. A higher tax regime may 
not only disincentivise production and hence reduce economic growth, 
but also impose income constraints that would discourage investments 
in EE technologies (Adom and Adams, 2020b). This may also apply to 
higher pricing regimes in an economy. Globalization induces not only a 
scale effect, which promotes economic growth, but also a technical ef
fect that advances EE improvements. Including both time-varying (τt) 
and time-invariant (δi) country-specific effects, together with income 
inequality and its interaction with EE, globalization (TOP), CPI (con
sumer price index) inflation (INF) and labour force participation rate 
(LAB) in the model would condition out the effects of these variables7 

and make the parameter of EE more likely to be identified. 
Further, we include the lagged dependent variable (yit− 1) to form a 

dynamic panel model to cater for conditional growth convergence. The 
implication of this convergence assumption is that low-income countries 
should grow faster in order to catch up and reach higher income levels. 
Another issue of concern is reverse causality from economic growth to 
EE (Liu et al., 2020). Following Cantore et al. (2016), the lag of EE 
(efit− 1) is included in the model to eliminate possible reverse causality 
problems as a further robustness check. Given that oil production is a 
key driver of economic growth, the authors included a country-specific 
dummy for oil-producing countries (OPC) in the model. In addition, we 
control for the effect of the global financial and economic crisis in 
2008–2009, using time dummies for these years. 

The resultant empirical model estimated is equation (9), where y and 
yt− 1 are the dependent and lagged dependent variables, respectively. 
The variables ef , eft− 1, IE, TOP, INF, LAB, OPC, s and g are the re
gressors, respectively, with Φ, βef , βef1, βIE, ρ, βs, βg, βTOP, βINF , βLAB, βg 

and βD being the respective parameters to be determined, and εit is the 
error term. The subscripts i and t represent individual countries and time 
in years, respectively, while τt and δi are the time-varying and time- 
invariant specific-country effects, respectively. 

lnyit =α + lnyit− 1 + βef lnefit + βef 1lnefit− 1 + βIElnIEit + ρlnefit*lnIEit + βslnsit

+ βglngit + βTOPlnTOPit + βINFINFit + βLABlnLABit + βDOPCi + δi + τt

+ εit

(9) 

This list of control variables, however, is not exhaustive to condition 
out all unobserved factors that might correlate with EE. Thus, the 
endogeneity of EE can still be an issue. As indicated by Bond et al. 
(2001), economic growth regressions typically involve endogenous re
gressors and variables measured with errors. This is because some of the 
variables, like the initial level of efficiency, that should be included in 
the growth regressions are not observed. The plausibility of approxi
mations in specifying a production function, data assumptions and the 
representativeness of samples introduces conceptual and data problems 
in the estimation task (Bond et al., 2001). This leads to endogeneity, 
measurement error and omitted variable problems in economic growth 
regressions. 

2.3. Econometric strategy 

Due to the above reasons, this study primarily relies on the gener
alized method of moments (GMM) estimator to deal with further 
endogeneity, serial correlation and incidental parameter problems 
(Ozcan and Ozturk, 2019: pp.103–4). In addition, the GMM estimator is 
most appropriate in dealing with heteroscedasticity when one or more 

regressors are endogenous. The GMM estimator remains more asymp
totically efficient and consistent than OLS8 or Instrumental Variable9 

(IV) estimators in the presence of the twin problems of hetero
scedasticity and endogeneity. In this situation, GMM makes use of 
orthogonality conditions to enable efficient estimation (Baum et al., 
2003). 

This study mainly applies four variants of the GMM estimator to 
estimate Equation (9), following Bond et al. (2001) to determine 
whether the difference GMM or system GMM is a more appropriate 
model to be estimated. This determination of aptness requires the esti
mation of pooled ordinary least squares (OLS) and panel fixed effects 
(FE) regressions. Estimating the autoregressive distributed lag of the 
dynamic panel model with OLS will cause a dynamic panel bias. Thus, 
the autoregressive term in the OLS regression will positively correlate 
with the error term, thereby leading to an upward bias in the coefficient 
of the lagged dependent variable. Similarly, a panel FE regression that 
relies on within-group transformation does not remove the dynamic 
panel bias either. The lagged dependent variable as a regressor will have 
a negative correlation with the error term after the transformation. 
Consequently, the autoregressive coefficient will suffer from a down
ward bias. The actual estimates of the true coefficient of the lagged 
dependent variable using GMM should lie between or near the down
ward and upward biased estimates (Bond et al., 2001). In addition, good 
GMM estimates of this coefficient should be less than unity to be 
dynamically stable so that growth converges to equilibrium values over 
time (Roodman, 2009). The dynamic stability of the autoregressive co
efficient also serves as a further robustness check of the aptness of the 
specified model. If the difference GMM estimate of the autoregressive 
coefficient is below or close to the downward-biased estimate, a system 
GMM is deemed superior in estimating the model. Otherwise, the dif
ference GMM is preferred (Bond et al., 2001). 

The difference GMM approach involves taking first-differences of a 
dynamic panel model regression equation to eliminate unobserved time- 
invariant individual specific effects and instrumenting for the right- 
hand-side variables in the first-differenced equations with the lagged 
levels of the series. The system GMM, in addition to the above, simul
taneously instruments for the level equations using lags or even levels of 
the first differences of the regressors. The number of lags (moment 
conditions) used depends on the regressors. For the autoregressive term 
as an additional regressor and for the endogenous variables, a minimum 
of two lags is used. For each of the predetermined regressors, at least one 
moment condition should suffice. For strictly exogenous regressors, a 
minimum of zero lags (Roodman, 2009) is required. 

The use of a higher number of lags would lead to weak instruments 
and instrument proliferation. Instrument proliferation can overfit the 
endogenous variables in the model, leading to a loss of power. In such 
instances, it is vital to ensure that valid overidentifying restrictions are 
tested and satisfied. The Hansen test for joint validity of instruments or 
overidentifying restrictions must then be satisfied. The test relies on the 
null hypothesis that overidentifying restrictions are valid. The minimum 
rule of thumb to check instrument proliferation is to ensure that the 
number of instruments does not exceed the number of groups (countries) 
in the panel (Roodman, 2009). Roodman (2009) further cautioned that 
accepting the validity of the overidentifying restrictions with a Hansen 
p-value above 0.25 is a source of concern because it can be an indication 
that instrument proliferation has affected and possibly invalidated the 

7 The sources of data for these variables and how they are computed is 
explained in Section 2.6. 

8 In the presence of heteroscedasticity, the OLS estimator becomes inefficient 
but the GMM estimator remains efficient. The presence of endogeneity together 
with heteroscedasticity even makes the efficiency of heteroscedastic OLS 
(HOLS) too unattainable unlike with GMM (Baum et al., 2003).  

9 In the presence of heteroscedasticity, the standard IV estimator is consistent 
but inefficient, and produces invalid inference since estimates of the standard 
errors are inconsistent (Baum et al., 2003). The GMM estimator still remains 
efficient under this condition. 
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Hansen test. Consequently, the overidentifying restrictions may appear 
valid with large p-values but actually invalid due to instrument prolif
eration. For these reasons, this study primarily minimizes the number of 
lags in the GMM instrumentation. 

In addition, GMM estimators assume that time-varying errors in the 
level equations are serially uncorrelated. This assumption is satisfied if 
there is a negative first-order autocorrelation, AR(1), of the first- 
differenced residuals and there is no AR(2) correlation of the first- 
differenced residuals (Roodman, 2009). The validity of using two or 
more lag periods of the dependent variable as GMM instruments de
pends on the absence of serial autocorrelation in the errors of the level 
equations. Therefore, this condition must be satisfied for the validity of 
all GMM models. 

In order to improve the efficiency of the GMM estimator, linear 
moment conditions in GMM can be augmented with nonlinear 
(quadratic) moment conditions (Ahn and Schmidt, 1995). Mindful of 
heteroscedasticity, the study augmented the moment conditions of the 
difference GMM with nonlinear moment conditions to explore the ef
fects on the model estimates. 

Though asymptotically efficient, the estimation of the optimal 
weighting matrix for a two-step GMM estimator may depend on the 
choice of the initial weighting matrix, especially in finite samples. 
Consequently, the robustness of the coefficient estimates and of the 
overidentification tests in empirical work might lead to the choice of 
only the most favoured results by GMM estimators. To address this 
problem, Hansen and Lee (2018) suggested the use of iterated GMM to 
remove the arbitrariness in choosing the initial weighting matrix. In 
iterated GMM, the weighting matrix and coefficient estimates are 
constantly updated until a convergence is reached (Kripfganz, 2019)10. 
This may make the coefficient estimates more robust. This study also 
applies the iterated GMM estimator to estimate the effect of EE on 
economic growth. 

On the conditional effects of EE on economic growth, we evaluate the 
total effect of EE using the median, mean, minimum and maximum in
come inequality values. Further, we compute the conditional marginal 
effects for each country to deal with possible heterogeneities that might 
exist in the data. We also follow Baron and Kenny (1986) and Anderson 
et al. (2014) to analyze the interaction of EE and income inequality. We 
check for the moderation hypothesis of income inequality and also 
conduct two sample tests to assess the differential validity of the 
moderating effect of income inequality. We split the sample between 
countries that have lower versus higher than the average level of income 
inequality in one breath, and also by the threshold classification of in
come inequality according to the United Nations where Gini values 
below 40% define low income inequality, and those above 40% are 
considered as high income inequality (Teng et al., 2011). Then, we 
assess the differential validity (Baron and Kenny, 1986; Andersson et al., 
2014) of the moderating effect of income inequality by testing for the 
statistical significance of the difference in means of the estimated total 
effect of EE. Finally, we test for the validity of the difference in mean 
income inequality between countries that have a lower versus higher 
than the average estimated total effect of EE on economic growth. 

2.4. Empirical strategy 

In order to estimate Equation (9), empirically, we address a number 
of issues to attest the robustness of the estimated effect of EE on growth. 
First, we test for heteroscedasticity as Baum et al. (2003) emphasized 
that testing for the presence of heteroscedasticity in the disturbance 
terms is imperative for GMM to be used. The Breusch-Pagan’s, Koenker’s 
and White’s tests confirmed the presence of heteroscedasticity of un
known form (see results in Table 2 and Table A.3). Moreover, a 

Phillips-Perron unit root test was also conducted to assess the statio
narity of the series. This test corrects for heteroscedasticity and auto
correlation of unknown forms in determining the stationarity of the 
series. It is also asymptotically robust (Zivot, 2003). The results of the 
Phillips-Perron unit root test are in Table A2 of Appendix A. 

The second issue is whether to use one-step or two-step GMM esti
mators. This study adopts two-step GMM estimators, rather than one- 
step, in line with conventional asymptotics. The former has a smaller 
asymptotic variance than the latter (Hwang and Sun, 2018). It is also 
more asymptotically efficient and produces valid inferences with Bond 
and Windmeijer’s (2005) corrected standard errors. The one-step esti
mators are less efficient asymptotically, although they produce valid 
inferences without corrected standard errors (Bond and Windmeijer, 
2005; Kripfganz, 2019). 

Third, considering the adverse effects of using further lags in GMM 
instrumentation, the number of lags has been restricted to a maximum of 
three. Moreover, the first-differencing of the dynamic panel model 
makes the lagged dependent variable potentially endogenous (Rood
man, 2009) because the first lagged term in the first-differenced autor
egressive term (yit− 1) correlates with the first lagged error term (εit− 1) of 
the first-differenced error term11. Consequently, we classify the lagged 
dependent variable and EE as endogenous regressors and instrumented 
them with a minimum of 2 lags and a maximum of 3 lags. Zero to a 
maximum of three lags were used for the exogenous regressors as in
struments. As a further robustness check, a sensitivity analysis of the 
coefficient estimates with respect to the choice of the number of lags12 

was also carried out. We adjust the lags of the endogenous variables, 
holding the lags of the other variables constant. Then, we adjust the lags 
of the exogenous variables, holding the lags of the other variables con
stant. We follow this adjustment procedure for both the differenced and 
the level equations. This is meant to report whether changes in the lags 
would affect the direction of the effects of EE. 

Fourth, this study also carries out sample sensitivity analysis as a 
further robustness check of the direction of the effect of EE on growth. 
Following Adom et al. (2019), countries from North Africa were 
excluded from the full sample to create a sub-sample comprising only 
sub-Saharan Africa (SSA) countries. The excluded countries were 
Algeria, Morocco, Libya, Egypt and Tunisia. The World Bank classifies 
these countries mainly as upper middle-income economies (World Bank, 
2018). The exclusion of these countries could reduce the potential in
fluence of outliers in the sample. In addition, the sensitivity of the 
estimation to changes in the time series was also carried out to check 
whether the direction of the effect of EE on economic growth remained 
robust. The rationale was to deal with potential business cycle issues. 
Four different sub-samples were generated from the full sample data 
period. The first three and the last three years were dropped to form the 

Table 2 
Heteroscedasticity test (on residuals of Equation (9)).  

Name of test Assumption Null Hypothesis df Chi-sq. test 

Breusch-Pagan/ 
Godfrey/ 
Cook- 
Weisberg 

Normality 
distribution of 
regression errors 

Constant variance 13 60.66*** 

Koenker No Normality Homoscedastic 
Disturbance 

99 437.584*** 

White No Normality Homoscedastic 100 133.64** 

***p < 0.01, **p < 0.05, *p < 0.1. 

10 We used the community-contributed Stata program “xtdpdgmm” written by 
Sebastian Kripfganz for the GMM estimations. 

11 For any ARDL(1), yit = α+ Φ yit− 1 + βxit + εit ; yit− 1 = α + Φ yit− 2 + βxit− 1 +

εit− 1. yit − yit− 1 = (yit− 1 − yit− 2) + β(xit +xit− 1) + (εit − εit− 1) implies Δyit =

Δyit− 1 + βΔxit + Δεit where Δ is the difference operator. Hence the yit− 1 in Δyit 

correlates with εit− 1in Δεit . 
12 Roodman (2009, pg. 156) admonishes researchers to aggressively test re

sults against the number of lags or instruments used. 
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first sub-sample. Then, the middle three years were also excluded from 
the full sample and the rest formed the second sub-sample. We exclude 
the first three and the last five years to create the third sub-sample and 
reverse the order of exclusion to create the fourth sub-sample. The es
timations were repeated for each of these sub-samples. 

Next, we apply the Andrews-Lu Model and Moment Selection 
Criteria (MMSC) to assess the best model among those estimated in the 
previous steps as a further robustness check for our model specification. 
With the MMSC, the model with the lowest values for the Akaike in
formation criterion (AIC), Bayesian information criterion (BIC) and 
Hann-Quin information criterion (HQIC) is selected as the model that 
fits the data best (Andrews and Lu, 2001). 

Finally, we perform the Pesaran (2004, 2015) residual 
cross-sectional dependence test on the panels. The test investigates the 
presence of mean correlation between panel units. The null hypothesis 
for this test is cross-sectional independence. A high mean correlation 
and/or the presence of cross-sectional dependence in the disturbances 
should be addressed since this can make the estimates less efficient and 
inconsistent. We address cross-sectional dependence problems using an 
alternative estimator, the augmented mean group (AMG). As indicated 
in Eberhardt and Teal (2020), the validity of the identification strategy 
of GMM estimators partly depends on the assumptions of common 
technology, stationarity of the series and cross-sectional independence 
(Pesaran and Smith, 1995). The stationarity of the series assumption is 
assessed by the results of the Phillips-Perron unit root test on the spec
ification of the series (see Table A.2 in Appendix A). To address the other 
assumptions, we employ the augmented mean group (AMG) estimator 
developed by Eberhardt and Teal (2008). The AMG estimator involves a 
two-stage procedure. In the first stage, we augment a pooled regression 
model with first-differenced year dummies. We retrieve the coefficients 
of the year dummies as the estimated cross-group average to represent 
the evolution of unobserved common factors across all panel groups. 

In the second stage, we augment the group-specific regression 
models with the estimated common dynamic effect by subtracting this 
effect from the dependent variable. Thus, a common dynamic process is 
imposed on each group with a unit coefficient. The AMG coefficients are 
then estimated as the average of group-specific estimates, as is the case 
in Pesaran and Smith (1995) mean group regressions. Monte Carlo 
simulations conducted by Eberhardt and Bond (2009) show that the 
inclusion of the common dynamic effect enables the identification of the 
regression coefficients and solves endogeneity problems arising from 
unobserved common factors. The inclusion of the common dynamic 
process also addresses cross-sectional dependence in the group-specific 
regressions (Bond and Eberhardt, 2013). The common dynamic effect 
is interpreted to denote similar factors that affect all groups but to 
different extents for each group (Eberhardt and Teal, 2020). Moreover, 
the differential impact of the common dynamic process on individual 
groups also implicitly relaxes the common technology assumption. 

We apply the AMG estimator to Equation (9). Since the common 
dynamic process may depend on the time dummies, we show the 
sensitivity of the estimates to the inclusion of the time dummies by 
estimating four variants of Equation (9). The first excludes the time 
dummies for the years 2008 and 2009, while the second excludes the 
time dummy for the year 2009 only. The third excludes the time dummy 
for 2008 only, and the fourth excludes the two time dummies. 

2.5. Data sources and description 

This study covers an unbalanced panel of 51 African countries13 for 
the period 1991–2017. Aggregate energy consumption is proxied as the 
total primary energy14 consumption (Pegwh) in GWh from the US Energy 

Information Administration (EIA). Primary energy is the total domestic 
energy demand. The price of gasoline (Gasopr) in US$ per litre obtained 
from various sources was used as the price variable for energy.15 Tem
perature (Temp) is the mean annual temperature in centigrade sourced 
from the World Bank Climate Change Knowledge Portal. A composite 
index (Findev), using principal component analysis, was computed to 
represent financial development. This index is based on five indicators 
of financial development: domestic credit to private sector (obtained 
from the World Development Indicator (WDI) database), bank credit to 
private sector, financial system deposits, bank assets and liquid liability 
(all obtained from the IMF database). Globalization is proxied by trade 
openness (TOP), and this is computed as the sum of exports and imports 
expressed as a percentage of GDP. Data on exports and imports is ob
tained from the WDI database. Income inequality (IE) is proxied by the 
Gini coefficients based on household disposable income obtained from 
the Slot’s Standard World Income Inequality Database (SWIID), version 
8.2 (Slot, 2019). Human capital index (Hcdi) is obtained from Penn 
World Tables, version 9. 

Data on the next set of variables were all directly obtained from the 
WDI database. Real output is measured as real GDP per capita (Y) in US$ 
at market exchange rates and population density (Popden) is the total 
population per square kilometre of land. Foreign direct investment (FDI) 
is measured as net FDIs inflows. Urbanization (Urbnzn) is the percentage 
of the population living in urban areas. Industry share of total output 
(indsha) is measured as the industry output as a percentage of GDP. The 
share of output devoted to capital investment (s) is measured as the gross 
capital formation in US$. Growth in population (g) is proxied by the 
logarithm of population in millions of people. Inflation (INF) is proxied 
by CPI inflation, while the labour force participation rate (LAB) is the 
proportion of the population that is economically active, supplying la
bour to produce goods and services. These people are in the age bracket 
of fifteen years and above (usually 65 or 70 years). EE scores (eff) were 
estimated by the authors with the stochastic frontier approach using 
Equation (3). Except for the human capital index (Hcdi), industry share 
in total output (indsha), urbanization (Urbnzn) and inflation (INF), all 
the other variables are measured in logarithms. Table 3 provides the 
descriptive statistics of these variables. Fig. 1 shows the mean time series 
plot of some of the key variables. 

Table 3 
Descriptive statistics.  

Variable Mean Std. Dev. Min. Max. Obs. 

lnPegwh 9.4174 1.8923 5.5494 14.3267 1371 
lnY 7.0540 1.0571 5.0865 9.9200 1343 
lnPopden 3.6994 1.2875 0.5768 6.4345 1370 
lnFindev 1.5779 0.2827 1.1871 3.2748 1198 
Hcdi 0.4787 0.1258 0.199 0.797 1237 
lnFDI 22.7815 0.2338 16.3575 23.6671 1361 
lnGasopr − 0.2282 0.5637 − 3.9120 1.2030 927 
Indsha 24.5578 12.4966 2.0732 87.7969 1255 
lnS 21.0840 1.7855 14.4887 25.3021 1202 
lnTemp 3.1894 0.1452 2.5360 3.4170 1377 
lnPop 15.7149 1.6147 11.1625 19.0671 1371 
lnTop 4.1606 0.4893 2.4397 6.2762 1294 
Urbnzn 39.6912 17.4505 5.491 88.976 1371 
Eff 0.0740 0.1231 0.0001 0.9251 749 
IE 45.1724 6.8696 32 66.5 749 
INF 28.7910 222.3003 − 11.6861 4145.106 1198 
LAB 65.7623 12.9926 41.37 90.16 1350 

Source: Authors’ own elaborations. 

13 All 54 African countries except Congo Republic, South Sudan and Somalia.  
14 But for cost and unavailability of data, final energy would have been a 

better measure. 

15 WDI database, Deutsche Gesellschaft für Internationale Zusammenarbeit 
(GIZ), International Energy Agency (IEA) and Kpodar and Abdallah’s (2017). 

P.K. Adom et al.                                                                                                                                                                                                                                



Journal of Cleaner Production 310 (2021) 127382

8

3. Results and discussion 

This section presents the main findings and a discussion of them. 
First, we discuss the drivers of energy demand and the subsequent 
estimation of EE. Second, we discuss the effect of EE improvements 
(conditioned on income inequality) on economic growth, which we 
further support by performing some robustness checks. 

3.1. Demand frontier determinants and estimated energy efficiency 

Table 4 shows the drivers of energy demand frontier. Per capita GDP, 
population density, financial development, share of industry’s output in 

GDP and urbanization have significant positive effects on energy de
mand. On the other hand, the price of energy (or gasoline) and human 
capital development exert a significant negative effect on energy de
mand. These results corroborate established empirical evidence in the 
energy demand literature (Adom and Adams, 2020b; Adom et al., 2018, 
2019b; Zang and Adom, 2018; Filippini and Zang, 2016). 

Table 5 contains the estimated energy efficiency(EE), decomposed 
into transient and persistent EE. The mean persistent EE is lower than 
the average transient EE. On average, the transient EE in Africa is 
0.8792, while the persistent EE is 0.0852. This translates into an overall 
mean EE value of 0.0750. The implication is that by improving overall 
EE, African can save approximately 93 (i.e. one minus 0.075) percent of 
the total primary energy. The high-energy inefficiency is primarily due 
to the high long-term or persistent energy inefficiency, which corrobo
rates the results of Adom et al. (2018) that the energy inefficiency 
problem in Africa is structural in nature. Stern (2012) similarly esti
mated EE in Africa to be very low. The low overall mean EE result of 
0.075 contradicts the average EE of 0.56 found by Ohene-Asare et al. 
(2020) using DEA. This might be the consequence of the fact that DEA 
does not account for the effect of measurement errors, data uncertainty, 

Fig. 1. Time series plot of key variables. This figure contains mean time series plot for real per capita GDP, energy efficiency, gross capital formation and income 
inequality (Gini index). 

Table 4 
Drivers of energy demand frontier (Equation (2)).  

VARIABLES Coefficient Standard Errors 

lnY 0.9482*** (0.0816) 
lnPopden 1.4741*** (0.1569 
lnFindev 0.2158*** (0.0761) 
Hcdi − 1.7011*** (0.4521) 
lnFDI − 0.0216 (0.0460) 
lnGasopr − 0.0527* (0.0302) 
indsha 0.0075*** (0.0017) 
lnTemp − 0.1654 (0.5852) 
Urbnzn 0.0071* (0.0041) 
t − 0.0085 (0.0059) 
t2 0.0003* (0.0001) 
Constant − 1.3390 (2.3335) 
Observations 749 749 
Number of Countries 45 45 
R-squared 0.741 0.741 

The dependent variable is the log of total primary energy consumption. Standard 
errors in parentheses. 
***p < 0.01, **p < 0.05, *p < 0.1. 

Table 5 
Estimates of energy efficiency (Equation (6)).  

Energy efficiency Mean Stand. Dev. Min. Max. Obs. 

Transient (exp( − τit)) 0.8792 0.0490 0.5400 0.9719 749 
Persistent (exp( − ui))  0.0852 0.1340 0.0001 1.0000 749 
Overall (exp( − τit − ui))  0.0750 0.1236 0.0001 0.9256 749 

NB: The overall energy efficiency is a product of transient and persistent effi
ciencies (see Section 2.1). The estimates are based on the application of the 
stochastic frontier technique to equation (6). 
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etc in estimating EE scores. Africa’s EE compares somewhat with the 
0.23 average EE for Belt and Road Initiative (BRI) developing countries 
(Liu et al., 2020). The high persistent energy inefficiency could be 
attributed to poor maintenance culture and lack of adequate in
vestments to upgrade technologies and equipment, and build capacity 
over the years (Adom et al., 2018). Thus, in order to significantly 
improve EE in Africa, EE policies of governments should target changing 
long-term behaviours. Policies that provide incentives for individuals to 
invest in energy-efficient technologies should be encouraged. 

3.2. Energy efficiency-economic growth nexus and income inequality 

This subsection presents and discusses the effect of EE on economic 
growth by applying two-step GMM estimators to Equation (9). The 
dependent variable for all the regressions is the logarithm of real GDP 
per capita. The coefficient of the autoregressive term estimated by the 
pooled OLS estimator is 0.9839 (see Table 6). This is statistically 

significant and represents the upward bias estimate of the first lag of the 
dependent variable. The coefficient of the lagged dependent variable 
representing a downward bias coefficient, as fitted by the FE estimator, 
is 0.8943. This means that the valid GMM model, which would explain 
the variations in the per capita GDP, should estimate the coefficient of 
the autoregressive regressor to be less than unity (for dynamic stability). 
This coefficient should also lie between 0.9839 and 0.8943. The esti
mated coefficient of the lagged dependent variable by the two-step 
difference GMM, following Bond et al. (2001), is 0.8917, which is 
close to the FE estimate and just below it. This means that the estimated 
coefficients of the two-step difference GMM are not reliable. In line with 
Ahn and Schmidt (1995), the estimated coefficient of the autoregressive 
regressor (0.8816) still falls outside the acceptable range after aug
menting the two-step difference GMM linear moment conditions with 
nonlinear moment conditions. 

Following Bond et al. (2001), the estimated coefficient of the 
autoregressive regressor for a two-step system GMM (an alternative to 

Table 6 
Estimation Results: Effect of energy efficiency on Economic Growth (Equation (9)).  

Variables Model 1 OLS: 
Upper Bound 

Model 2 FE: 
Lower Bound 

Model 3 Two-step 
Difference GMM 

Model 4 Two-step GMM 
with Nonlinear 

Model 5 Two-step 
System GMM 

Model 6 Iterated 
Difference GMM 

1st lag of GDP (lnYt− 1)  0.9839*** 0.8943*** 0.8917*** 0.8816*** 0.9058*** 0.9077***  
(0.0040) (0.0264) (0.0481) (0.0382) (0.0346) (0.0473) 

Energy Efficiency (lneft)  − 0.0562 − 0.0029 0.6413** 0.6286** 0.6825* 0.6578**  
(0.0568) (0.2071) (0.2865) (0.2763) (0.3808) (0.3206) 

1st lag of Energy Efficiency 
(lneft− 1)  

0.0550 0.0867** 0.0375 0.0405 0.0093 0.0693**  

(0.0551) (0.0374) (0.0604) (0.0608) (0.0876) (0.0333) 
Income Inequality (dlnIEt)  0.5586 0.7221 1.0138 0.9847 1.0802 1.5092*  

(0.4674) (0.6370) (0.7788) (0.7461) (1.1503) (0.9153) 
Energy Efficiency*Income 

Inequality (lnef* dlnIE)  
− 0.0003 − 0.0117 − 0.1626** − 0.1584** − 0.1853** − 0.1623*  

(0.0027) (0.0448) (0.0751) (0.0734) (0.0935) (0.0838) 
Capital Formation (lns)  0.0176*** 0.0220*** 0.0495*** 0.0494*** 0.0355** 0.0367***  

(0.0035) (0.0070) (0.0162) (0.0164) (0.0171) (0.0125) 
Population (lng)  − 0.0137*** 0.0190 − 0.1816* − 0.1667** − 0.0485 − 0.1436  

(0.0042) (0.0385) (0.0999) (0.0794) (0.0371) (0.1109) 
Trade Openness (lnTOP)  0.0045 0.0025 0.0398** 0.0410** 0.0072 0.0524**  

(0.0057) (0.0153) (0.0182) (0.0199) (0.0248) (0.0208) 
Inflation (INF)  0.0001 − 0.0004 − 0.0001 − 0.0002 − 0.0002 − 0.0015***  

(0.0002) (0.0003) (0.0019) (0.0019) (0.0013) (0.0005) 
Labour Force Participation Rate 

(dlnLAB)  
− 0.0248 0.1280* − 0.0368 − 0.0423 − 0.0161 0.0259  

(0.1405) (0.0695) (0.1043) (0.1111) (0.1334) (0.1595) 
Oil Producing Country (i.OPC)  0.0032 – 0.0359 0.0090 0.0834 − 0.1133  

(0.0040) – (0.2253) (0.2348) (0.0743) (0.1635) 
Year 2008 0.0028 0.0040 − 0.0294 − 0.0297 0.0032 − 0.0197  

(0.0042) (0.0043) (0.0193) (0.0206) (0.0211) (0.0206) 
Year 2009 − 0.0275*** − 0.0253*** − 0.0285 − 0.0279 − 0.0209 − 0.0088  

(0.0056) (0.0055) (0.0265) (0.0280) (0.0212) (0.0111) 
Constant − 0.0518 0.1439 2.7904** 2.6546*** 0.6205 2.5854*  

(0.0546) (0.6181) (1.1128) (0.9344) (0.4688) (1.3755) 

R-squared 0.9993 0.965 – – – – 
Observations 408 408 408 408 408 408 
Number of Countries 40 40 40 40 40 40 
Instrument Count – – 30 31 39 30 
No. of Parameters 14 13 14 14 14 14 
AR(1) p-value – – 0.0100 0.0004 0.0056 0.0024 
AR(2) p-value – – 0.4915 0.6121 0.7074 0.2428 
Sargan p-value – – 0.8019 0.8364 0.7904 0.869 
Hansen p-value – – 0.217 0.0586 0.1582 0.869 
Mean ρ between Panel Units 0.02 0.01 0.05 0.05 0.00 0.06 
Pesaran CD-test 3.436*** 1.259 7.65*** 7.80*** 0.883 8.502*** 
Andrews-Lu model and Moment Selection Criteria (MMSC)     
MMSC-AIC – – − 20.8773 − 22.6241 ¡30.8617 − 22.0463 
MMSC-BIC – – − 47.8994 − 51.3351 ¡73.0837 − 49.0683 
MMSC-HQIC – – − 31.0654 − 33.4489 ¡46.7805 − 32.2343 

The dependent variable is the log of real GDP per capita. The estimates are based on applying pooled OLS, panel fixed effects and GMM estimators to equation (9). 
Robust standard errors in parentheses; CD is cross-sectional dependence with the null hypothesis being cross-sectional independence; ρ is correlation between panel 
units; ***p < 0.01, **p < 0.05, *p < 0.1. 
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the two-step difference GMM estimator) is 0.9058. This is dynamically 
stable and lies within the acceptable range. As a further robustness check 
of model specification, the instrument count of Model 5 in Table 6, being 
39, is below the number of countries (i.e. 40) as required.16 The errors of 
Model 5 are serially uncorrelated as there is no first-order autocorrela
tion of the first-differenced residuals, but as required, there is 
first-differenced residuals’ autocorrelation of order two. Again, the 
Hansen test confirms the validity of overidentifying restrictions in Model 
5. The p-value of the Hansen test (i.e. 0.1582 as shown in Table 6) is also 
below the cautionary 0.25 limit, above which the model would be sus
pected to have instrument proliferation problems. Moreover, Model 5 
has no cross-sectional dependence (CD) problem as the Pesaran CD test 
has not rejected the null hypothesis of cross-sectional independence. The 
implementation of the Andrews-Lu model and moment selection criteria 
(MMSC) that estimates the AIC, BIC and HQIC also produced the least 
values for Model 5. This further indicates that Model 5 best fits the data 
among the other competing GMM models. Therefore, Model 5 is adopted 
as the benchmark model to explain the effect of EE on economic growth. 

The coefficients of the regressors in Equation (9) are short-run 
elasticities. Model 5 shows that EE has a significant positive effect (at 
the 10% level) on economic growth,17 which represents the direct effect 
of EE on economic growth, assuming an egalitarian or equitable state. 
The egalitarian state is associated with the interpretation of the direct 
effect because the interaction effect must be zero, which requires that 
the logarithm of the income inequality variable should be zero, and 
hence the level of income inequality is 1% (minimal income 
inequality18) since the Gini index values are reported in percentages. A 
one percent increase in EE would lead to a 0.68 percent increase in 
economic growth. Generally, this implies that it would be possible to 
achieve the twin goals of economic growth and environmental sustain
ability. Thus, EE (SDG 7 target) draws positive synergies with economic 
growth (a relevant aspect of SDG 8). 

Two possible explanations can be argued for this effect. First, EE 
improvements generate energy savings that can free up additional re
sources to purchase additional factors of production to boost output, and 
hence economic growth. However, this assumes that the other factors of 
production are normal goods, and the production function is not in the 
stage where there are negative returns. Even if there are diminishing 
returns to labour, savings from EE improvements could still be invested 
in the present or future acquisition of capital; hence, economic growth 
would still increase. However, if the above assumptions totally break 
down, then savings from EE improvements would still be relevant for 
achieving environmental quality. Second, if the improvements in EE 
induce more energy use, economic growth would still increase but at a 
higher environmental cost due to more pollution. This is the so-called 
take-back or rebound effect of EE. 

The direct positive effect of EE on economic growth is consistent with 
the findings of a number of studies. This includes similar studies on EE- 
economic growth in economies like USA (Razzaq et al., 2021) and 
Canada (Bataille and Melton, 2017); multi-country studies (Rajbhandari 
and Zhang, 2018), European countries (Marques et al., 2019), China (Hu 
et al., 2019), UK (Heun and Brockway, 2019) and the BRICS group of 
countries (Akram et al., 2021). It is also consistent with studies on 
developing economies like Malaysia (Go et al., 2019), emerging econ
omies (Bayar and Gavriletea, 2019) and others (Ohene-Asare et al., 

2020; Cantore et al., 2016). However, it contrasts the findings of no 
meaningful effect on European countries (Pan et al., 2019), Pakistan 
(Mahmood and Kanwal, 2017) and India (Sinha, 2015) in the literature. 
This could be the consequence of the use of total factor energy pro
duction efficiency, energy intensity and reduction in fossil-fuel energy 
waste as proxies for EE respectively, and endogeneity issues. We defer 
the explanation of the conditional and moderated effect of EE to the next 
section. 

Capital formation has a positive effect on economic growth. The 
results show that a one percent increase in gross capital formation 
would, on average, lead to a 0.04 percent increase in economic growth. 
This confirms the empirical results of Sharma (2010) and the 
Harod-Domar model of economic growth. There is evidence of conver
gence in economic growth, which is consistent with the catch-up theory 
of economic growth (Lakhera, 2016) as the coefficient of the lagged 
dependent variable (i.e. speed of adjustment) is statistically significant 
and close to unity (i.e. 0.9058). 

The direction of the estimated relationships in the iterated GMM 
(Model 6) is very consistent with those of the two-step system GMM 
except that the statistical significance of the coefficients improves 
slightly. Of particular importance to this study, the direct effect of EE 
improvements on economic growth is still positive and statistically 
significant, which confirms the claim that EE contributes to ‘green’ 
economic growth. The effects of trade and capital formation are positive 
and statistically significant, but inflation exerts a significant negative 
effect on economic growth. However, the Hansen p-value of 0.869 in
dicates that instrument proliferation can harm the validity of the test for 
overidentifying restrictions in Model 6. 

Finally, the two-step system GMM (Model 5) shows zero mean cor
relation across panel groups and there is no cross-sectional dependence 
problem as Pesaran (2004, 2015) residual cross-sectional independence 
hypothesis is not rejected. However, the other GMM models have a mean 
correlation between 0.05 and 0.06, as presented in Table 6. These 
models also exhibit statistically significant cross-sectional dependence 
at the 1% significance level. We address this problem with an alternative 
estimator as part of our robustness check in Section 3.4. 

3.3. Conditional effects of energy efficiency on growth 

All the estimated GMM models show that the effect of the interaction 
of EE and income inequality is negative and statistically significant. This 
satisfies the moderation hypothesis (Baron and Kenny, 1986; Andersson 
et al., 2014) for the use of income inequality as a moderating variable. 
This implies that higher income inequality constrains the growth – 
induced effect of EE. The total effect of EE, computed at the mean and 
median income inequality values in Table 7a, shows that the estimated 
effects are qualitatively similar, ruling out the possibility of significant 
outliers in the data. The estimates based on the minimum and maximum 
values of income inequality show that the total positive effect of EE on 
economic growth is higher (0.8924 vs. 0.3370) for economies with 
minimal income inequality than those with high income inequality. 

Table 7b shows the results of the tests for the differential validity of 
the moderating effect of income inequality. The estimates show that the 
total positive effect of EE on economic growth is higher for economies 
with lower income inequality than for those with widespread income 

Table 7a 
Estimates of Conditional effect at various Gini index (income inequality) values.  

Conditional effect estimated Total Effect Standard Error [95% Confidence 
Interval] 

At the median Gini 0.6825*** 0.0381 0.6078 0.7572 
At the mean Gini 0.6857*** 0.0382 0.6108 0.7606 
At the minimum Gini 0.8924*** 0.0485 0.7973 0.9875 
At the maximum Gini 0.3370*** 0.0215 0.2949 0.3791 

***p < 0.01, **p < 0.05, *p < 0.1. 

16 In doing the analysis, the analytical software dropped 11 out of the 51 
countries for insufficient observations for some of the countries due to differ
encing and lagging of variables as required for GMM. Thus, the results reported 
here are based on 40 countries. 
17 We checked for a possible non-linearity in the EE-economic growth rela

tionship by estimating Model 5 again after including the square of the EE 
variable and the coefficient of the square term is not statistically significant.  
18 Thus, lnefit*lnIEit = 0 ⇒lnIEit = 0⇒IEit = 1% = 0.01 as ​ the ​ Gini ​ value 

which is a fairly egalitarian state. 
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inequality. These results suggest that, in Africa, widespread income 
inequality could compromise the growth-induced effect of EE and hence 
prevent the attainment of ‘green’ economic growth. Thus, unequal in
come distribution remains an important barrier to improving EE and 
hence economic growth. 

Fig. 2 shows the country-specific conditional effect of EE on eco
nomic growth. The estimated mean total effect (green line) is at 0.6857. 
Overall, even conditioning for country-specific heterogeneities in in
come inequality, the mean total effect is positive for all the countries. 
However, twenty-five countries have a higher than the estimated 
average total effect of EE after conditioning for income inequality, as 
shown in Fig. 2. The mean income inequality measure (Gini index) for 
these countries is lower (average Gini of 43.4) than that of the countries 
with total effect below the estimated average total effect (average Gini of 
46.1). The two-sample t-test of difference in means shows that the mean 
Gini index of countries with higher than the estimated average total 

effect is significantly lower at the 1% significance level compared to 
their counterparts with lower than estimated average total effect (see 
Table 7c). The country-specific marginal effects confirm the results that 
higher income inequality impedes the growth-induced effect of EE. 
Thus, while doubling efforts in EE is critical to achieving Sustainable 
Development Goal 7, in Africa, it can only happen under improved and 
fairly distributed income situations. 

3.4. Robustness of growth effects of energy efficiency 

This study applies four empirical procedures to ascertain the 
robustness of the direction of the effects. These are the sample sensi
tivity, lag sensitivity of the results, sensitivity of the estimation results 
with respect to the time period considered and the augmented mean 
group estimator (AMG). In the case of sample sensitivity, Table B.1 (see 
Appendix B) contains the results of the estimation for only the sub- 
Saharan African (SSA) countries. Among the estimators, the two-step 
difference GMM model is the most suitable model given that the coef
ficient of the autoregressive regressor is dynamically stable, falling be
tween the upper and lower bounds. Consistently, the direction of effect 
is similar to the full sample case, albeit statistical significance for the 
case of the two-step system GMM and the iterated GMM estimators 

Table 7b 
Test for differences in means of total effect of energy efficiency.  

Income 
inequality (Gini 
values) 

Mean Total 
Effect 

Standard 
Error 

Standard 
Deviation 

[95% Conf. 
Interval] 

Below the 
average (A) 

0.6889 0.0015 0.0416 0.6860 0.6918 

Above the 
average (B) 

0.6829 0.0020 0.0463 0.6789 0.6869 

Difference in 
means (A-B) 

0.0060** 0.0025 – 0.0012 0.0109 

Below the 40% 
threshold (C) 

0.7068 0.0016 0.0230 0.7037 0.7099 

Above the 40% 
threshold (D) 

0.6825 0.0014 0.0456 0.6798 0.6852 

Difference in 
means (C-D) 

0.0230*** 0.0032 – 0.0181 0.0305 

This table presents the two-sample t-test for difference in means of the estimated 
total effect of energy efficiency on economic growth for lower vs. higher income 
inequality countries, based on the estimates of Model 5; ***p < 0.01, **p < 0.05, 
*p < 0.1. 

Fig. 2. Country-specific mean conditional effect of energy efficiency (own elaborations). This figure shows the total effect of energy efficiency on economic growth 
after accounting for heterogeneity in income inequality levels. 

Table 7c 
Test for differences in means of income inequality.  

Total Effect Mean Gini Std. 
Error 

Std. 
Deviation 

[95% Conf. Interval] 

Below the 
average (A) 

46.1063*** 0.2419 6.0291 45.6312 46.5815 

Above the 
average (B) 

43.3980*** 0.2727 7.2246 42.8627 43.9334 

Difference in 
means (A-B) 

2.7083*** 0.3686 – 1.9853 3.4313 

This table presents the two-sample t-test for difference in means of the Gini index 
between countries that have a lower vs. higher than the average estimated total 
effect of energy efficiency on economic growth, based on the estimates of Model 
5; ***p < 0.01, **p < 0.05, *p < 0.1. 
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differs. Directly, EE triggers economic growth, but income inequality 
compromises this effect. Thus, reducing income inequality increases the 
EE elasticity of growth. However, owing to the reduction of the full 
sample, the instrument count of the two-step system GMM model is 
higher than the number of countries in the SSA sample. Consequently, 
the overidentifying restrictions are invalid, as the Hansen p-value is less 
than 10% (i.e. p-value = 0.0716). 

Second, we present the sensitivity of the results to the number of lags 
used in generating internal instruments18 in the most correctly specified 
model, the two-step system GMM (Model 5). The direct effect of EE on 
economic growth remains positive when the lags of the endogenous 
variables were adjusted (see Table B.2). The positive direct effect of EE 
on economic growth is still preserved. In addition, the magnitude of the 
coefficients associated with EE and with the interaction term are 
consistent across the estimated models. The estimates are therefore 
robust with respect to changes in the lags of the endogenous variables. 
The same conclusion can be drawn when the lags of the exogenous 
variables were adjusted (see Table B.2). As regards the adjustment of 
lags used in instrumenting for the level equations, the results follow the 
same trend (see Table B.3). The signs of the key regressors discussed 
above are consistent with those of the main results in Table 6. 

Further, the sensitivity of the estimation results with respect to time 
period considered shows the same direction of effect, consistent with the 
main results in Table 6. Table B.4 and B.5 show consistent positive direct 
effect of EE on economic growth for the four separate time series sub- 
samples. The interaction between EE and income inequality maintains 
its robust negative effect on economic growth, confirming the claim that 
a highly skewed income distribution can hinder the growth-induced 
effect of EE. 

Finally, Table B.6 displays the results of applying the AMG estimator 
to Equation (9). Overall, the results of the four models show the same 
direction of the effect of EE on economic growth when compared to the 
estimates of the GMM models in Table 6. However, the magnitude of the 
effects is higher in the AMG models than in the GMM models. This is 
understandable because the AMG estimates pertain to the long run, 
while the GMM estimates pertain to the short run. The test of cross- 
sectional dependence shows the non-rejection of the null hypothesis of 
cross-sectional independence. 

4. Conclusion and policy recommendations 

This study examines the link between energy efficiency (EE) and 
economic growth for 51 African countries while conditioning for the 
moderating effect of income inequality. SDG7 (sustainable energy for 
all) is closely connected to SDG1 (no poverty), SDG8 (sustainable eco
nomic growth or green growth), SDG10 (reduced inequality) and SDG13 
(combating climate change impacts). We apply the stochastic frontier 
technique to estimate EE and the two-step GMM to examine the (con
ditional) effect of EE on economic growth in Africa. The authors con
ducted sample and lag sensitivity analyses, among others, as a further 
robustness check of the results. 

The computed average EE score is very low, and the decomposition 
shows that the problem of energy inefficiency is structural, requiring 
governments to implement policies targeted at changing long-term be
haviours instead of short-term behaviours. Primarily, we find that the 
direct effect of EE on economic growth is consistently positive and sta
tistically significant. However, the moderating effect via income 
inequality is consistently negative and statistically significant. The total 
conditional effect of EE on economic growth is robustly positive, but it is 
much higher in economies with minimal income inequality. The result 

revealed that the total effect of EE evaluated at the minimum level of 
income inequality is approximately 0.5 percentage points higher than 
when evaluated at the maximum level of income inequality. 

On the one hand, the direct effect suggests the possibility of attaining 
‘green’ economic growth via EE. On the other hand, the moderating 
effect suggests that widespread income inequality can constrain the 
growth-induced effect of EE. Thus, EE improvements might not lead to a 
win-win situation, as professed by the Porter hypothesis, in economies 
with a highly unequal distribution of income. 

The above result corroborates the United Nation’s stand on the need 
for countries around the world to double their efforts in EE improve
ments. In this regard, African governments should favour policies that 
target changing long-term behaviours, such as the institution and 
implementation of EE policies and regulations, interventions to 
discourage the use of inefficient equipment, incentivise the use of 
energy-efficient equipment and provide flexible financing schemes for 
such investments. However, the agenda of doubling efforts in EE can 
only be very effective if significant importance is attached to policies 
that reduce income inequality or help improve the incomes and living 
conditions of poor people in Africa. Establishing a guaranteed public 
financing system that helps people in lower-income brackets could also 
be critical. To this end, tax holidays on basic energy-efficient appliances 
mainly used by lower-income people would simultaneously improve EE 
and reduce income inequality. 

The results of this study have revealed that income inequality is an 
important constraint in advancing the growth-induced effect of EE. 
However, there are other important socio-economic factors like level of 
education and institutional environment, which could equally influence 
the growth-induced effect of EE. Conditioning the effect of EE on these 
factors could worth future investigation. 
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APPENDIX A   

Table A.1 
Hausman test (on Equation (6))   

Coefficients    

Variable fixed random Difference (Fixed-Random) Standard error 

lnY 0.9482 0.8198 0.1285 0.0330 
lnPopden 1.4741 0.6506 0.8235 0.1308 
lnFindev 0.2158 0.1476 0.0682 0.0144 
Hcdi − 1.7011 − 0.7313 − 0.9699 0.1364 
lnFDI − 0.0216 − 0.0133 − 0.0083 0.0024 
lnGasopr − 0.0527 − 0.0733 0.0206 0.0057 
indsha 0.0075 0.0096 − 0.0021 0.0003 
lnTemp − 0.1654 − 0.7164 0.5510 0.3119 
Urbnzn 0.0071 0.0098 − 0.0027 0.0019 
t − 0.0085 0.0087 − 0.0172 0.0029 
t2 0.0003 0.0002 0.0000 0.0000 

Fixed = consistent under Ho and Ha; obtained from xtreg; Random = inconsistent under Ha, efficient under Ho; obtained from xtreg. 
Test: H0: difference in coefficients not systematic Chi2(10) = 89.67. Prob > chi2 

= 0.0000.   

Table A.2 
Philip-Perron Unit root tests for the full sample  

Variable test statistic p-value Variable test statistic p-value 

lnYt  P 195.5572 0.0000 lns  P 162.1878 0.0001  
Z − 2.3754 0.0088  Z − 1.686 0.0459  
L* − 3.3435 0.0005  L* − 2.1736* 0.0153  
Pm 6.5503 0.0000  Pm 4.3973 0.0000 

lnYt− 1  P 195.5639 0.0000 lng  P 435.9942 0.0000  
Z − 2.8137 0.0024  Z − 5.119 0.0000  
L* − 3.6872 0.0001  L* − 11.22 0.0000  
Pm 6.5508 0.0000  Pm 23.3843 0.0000 

lneft  P 157.1281 0.0000 lnTOP  P 158.8947 0.0002  
Z − 1.8572 0.0316  Z − 2.6369 0.0042  
L* − 3.2906 0.0006  L* − 3.016 0.0014  
Pm 5.642 0.0000  Pm 4.1645 0.0000 

lnIEt  P 103.2882* 0.2874 INF  P 425.3496 0.0000  
Z 1.7777* 0.9623  Z − 12.1703 0.0000  
L* 1.5475* 0.9384  L* − 15.8807 0.0000  
Pm 0.526* 0.2995  Pm 23.3821 0.0000 

dlnIEt  P 637.0047 0.0000 lnLAB  P 58.9611* 0.9996  
Z − 17.385 0.0000  Z 4.8733* 1  
L* − 25.116 0.0000  L* 4.7831* 1  
Pm 39.0437 0.0000  Pm − 2.9019* 0.9981 

lnef* 
dlnIE  

P 314.1175 0.0000 dlnLAB  P 268.426 0.0000  

Z − 6.356 0.0000  Z − 4.646 0.0000  
L* − 12.301 0.0000  L* − 6.8449 0.0000  
Pm 18.1253 0.0000  Pm 11.9095 0.0000 

Note: P – inverse chi-squared, Z – inverse normal, L – inverse logit, Pm – modified inverse chi-squared; *p > 0.1 is not stationary at levels.   

Table A.3 
Panel data normality test (Equation (9))   

Skewness Coefficient Kurtosis Coefficient Joint test for Normality Chi-square 

Error (e) − 0.5616 4.9245*** 12.67*** 
Individual effect (u) 1.3659** 3.2383 9.49*** 

***p < 0.01, **p < 0.05, *p < 0.1. 
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APPENDIX B   

Table B.1 
Estimates for Sub-Saharan African (SSA) Countries  

Variables OLS: Upper bound FE: Lower bound Two-step Difference 
GMM 

Two-step GMM with 
Nonlinear 

Iterated Difference GMM Two-step System GMM 

lnYt− 1  0.9821*** 0.8934*** 0.9283*** 0.9430*** 0.9541*** 0.8853***  
(0.0042) (0.0289) (0.0370) (0.0633) (0.0524) (0.0509) 

lneft  ¡0.0486 0.0206 0.4666 0.4544 0.4554* 0.8139**  
(0.0588) (0.2137) (0.3208) (0.3274) (0.2711) (0.3955) 

lneft− 1  0.0448 0.0643* 0.0233 − 0.0084 0.0652* 0.0425  
(0.0573) (0.0354) (0.0714) (0.0728) (0.0387) (0.0739) 

dlnIEt  0.7565 1.5200** 2.1964*** 2.4818*** 1.8501* 2.5239  
(0.5460) (0.7477) (0.8458) (0.9100) (1.0341) (2.0329) 

lnef* dlnIE  0.0003 − 0.0162 − 0.1228 − 0.1276 − 0.1054 − 0.2270**  
(0.0027) (0.0458) (0.0782) (0.0845) (0.0681) (0.1085) 

lns  0.0202*** 0.0251*** 0.0505*** 0.0561*** 0.0385*** 0.0422**  
(0.0038) (0.0078) (0.0158) (0.0173) (0.0120) (0.0175) 

lng  − 0.0159*** 0.0134 − 0.2133** − 0.2578* − 0.1895** − 0.0490  
(0.0045) (0.0427) (0.0955) (0.1381) (0.0909) (0.0313) 

lnTOP  0.0031 − 0.0057 0.0440 0.0458* 0.0527*** 0.0166  
(0.0061) (0.0172) (0.0269) (0.0260) (0.0184) (0.0460) 

INF  0.0001 − 0.0004 − 0.0008 − 0.0006 − 0.0014*** − 0.0003  
(0.0002) (0.0002) (0.0017) (0.0014) (0.0003) (0.0018) 

dlnLAB  − 0.0570 0.1161 − 0.0759 − 0.1322 − 0.0993 − 0.0780  
(0.1588) (0.0806) (0.1078) (0.1085) (0.1813) (0.1138) 

i.OPC  0.0043 – 0.1458 0.3154 − 0.0992 0.0525  
(0.0042) – (0.3398) (0.3193) (0.1769) (0.0784) 

year2008  0.0025 0.0036 − 0.0276* − 0.0328* − 0.0266* − 0.0092  
(0.0045) (0.0045) (0.0161) (0.0170) (0.0144) (0.0239) 

year2009  − 0.0304*** − 0.0287*** − 0.0261 − 0.0356* − 0.0079 − 0.0358*  
(0.0063) (0.0059) (0.0228) (0.0210) (0.0115) (0.0215) 

Constant − 0.0549 0.1433 2.8055** 2.9473* 2.9800*** 0.6258  
(0.0604) (0.6733) (1.1602) (1.6080) (1.1428) (0.4403) 

Observations 357 357 357 357 357 357 
R-squared 0.999 0.963 – – – – 
Number of ID  36 36 36 36 36 
Instrument Count – – 30 31 30 39 
AR(1) p-value – – 0.0167 0.0001 0.0077 0.1073 
AR(2) p-value – – 0.5043 – 0.3671 0.6921 
Sargan p-value   0.7553 0.6948 0.8909 0.8685 
Hansen p-value – – 0.0438 0.2040 0.8909 0.0716 
Mean ρ in Panels 0.02 0.00 0.03 0.05 0.08 0.01 
P-CD-test 2.152** 0.105 4.607 *** 6.285 *** 10.479 *** 1.004 

The dependent variable is the log of real GDP per capita. Robust standard errors in parentheses; CD is cross-sectional dependence; ρ is the correlation between panel 
units; OLS is Ordinary Least Squares; FE is Fixed Effects; ***p < 0.01, **p < 0.05, *p < 0.1.   

Table B.2 
Lag sensitivity of endogenous and exogenous variables for the differenced equations  

VARIABLES Lags of the endogenous variables  Lags of exogenous variables 

Lags (2 2) Lags (2 3)* Lags (2 4) Lags (2 5) Lags (2 6) Lags (0 1) Lags (0 2) Lags (0 3)* Lags (0 4) Lags (0 5) 

lnYt− 1  0.9095*** 0.9058*** 0.9035*** 0.8999*** 0.9080*** 0.9162*** 0.8844*** 0.9058*** 0.9091*** 0.9111***  
(0.0349) (0.0346) (0.0705) (0.0366) (0.0279) (0.0483) (0.0397) (0.0346) (0.0339) (0.0355) 

lneft  0.6905* 0.6825* 0.6708 0.6638 0.6021* 0.5993** 0.6510* 0.6825* 0.5770** 0.6178*  
(0.4066) (0.3808) (1.3894) (0.4747) (0.3106) (0.2932) (0.3396) (0.3808) (0.2879) (0.3289) 

lneft− 1  − 0.0016 0.0093 0.0235 0.0090 − 0.0060 − 0.0495 0.0096 0.0093 − 0.0052 − 0.0192  
(0.0734) (0.0876) (0.2297) (0.0884) (0.0765) (0.0727) (0.0549) (0.0876) (0.1057) (0.0899) 

dlnIEt  1.1590 1.0802 0.9821 1.1511 1.0938 1.2537 0.8030 1.0802 0.5626 1.0122  
(1.0884) (1.1503) (3.4616) (1.2972) (1.2713) (1.0280) (1.1509) (1.1503) (0.8223) (2.1488) 

lnef* dlnIE  ¡0.1839* ¡0.1853** ¡0.1827 ¡0.1784 ¡0.1583** ¡0.1508** ¡0.1777** ¡0.1853** ¡0.1533** ¡0.1615**  
(0.1006) (0.0935) (0.3595) (0.1105) (0.0738) (0.0736) (0.0840) (0.0935) (0.0667) (0.0754) 

lns  0.0359** 0.0355** 0.0417 0.0437* 0.0445** 0.0293** 0.0353** 0.0355** 0.0393** 0.0420***  
(0.0176) (0.0171) (0.0531) (0.0241) (0.0177) (0.0137) (0.0139) (0.0171) (0.0163) (0.0154) 

lng  − 0.0528* − 0.0485 − 0.0510 − 0.0536 − 0.0561* − 0.0582** − 0.0568** − 0.0485 − 0.0508 − 0.0597*  
(0.0315) (0.0371) (0.0905) (0.0438) (0.0333) (0.0288) (0.0286) (0.0371) (0.0332) (0.0305) 

lnTOP  0.0052 0.0072 0.0182 0.0173 0.0149 0.0019 0.0278 0.0072 0.0051 0.0088  
(0.0223) (0.0248) (0.0664) (0.0334) (0.0324) (0.0320) (0.0342) (0.0248) (0.0439) (0.0430) 

INF  − 0.0001 − 0.0002 0.0000 − 0.0000 0.0002 − 0.0007 − 0.0007 − 0.0002 0.0000 0.0000  
(0.0015) (0.0013) (0.0027) (0.0019) (0.0019) (0.0009) (0.0017) (0.0013) (0.0019) (0.0016) 

(continued on next page) 
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Table B.2 (continued ) 

VARIABLES Lags of the endogenous variables  Lags of exogenous variables 

Lags (2 2) Lags (2 3)* Lags (2 4) Lags (2 5) Lags (2 6) Lags (0 1) Lags (0 2) Lags (0 3)* Lags (0 4) Lags (0 5) 

dlnLAB  − 0.0168 − 0.0161 − 0.0428 − 0.0328 − 0.0426 − 0.2881** − 0.1686 − 0.0161 − 0.0100 − 0.0266  
(0.1338) (0.1334) (0.4758) (0.1343) (0.1312) (0.1440) (0.1232) (0.1334) (0.1223) (0.1380) 

i.OPC  0.0775 0.0834 0.0667 0.0655 0.0670 0.1095** 0.1256* 0.0834 0.0806 0.0718  
(0.0729) (0.0743) (0.3558) (0.0776) (0.0746) (0.0447) (0.0686) (0.0743) (0.0725) (0.0595) 

year2008  0.0036 0.0032 − 0.0034 − 0.0043 − 0.0022 0.0312 0.0034 0.0032 0.0068 0.0038  
(0.0213) (0.0211) (0.1042) (0.0326) (0.0196) (0.0345) (0.0177) (0.0211) (0.0136) (0.0149) 

year2009  − 0.0197 − 0.0209 − 0.0285 − 0.0263 − 0.0305 − 0.0092 − 0.0138 − 0.0209 − 0.0271*** − 0.0326**  
(0.0224) (0.0212) (0.0744) (0.0406) (0.0296) (0.0354) (0.0188) (0.0212) (0.0103) (0.0155) 

Constant 0.6734* 0.6205 0.5479 0.5600 0.5275 0.8045** 0.7979** 0.6205 0.5587 0.6148  
(0.3969) (0.4688) (0.8049) (0.4661) (0.3817) (0.3984) (0.3659) (0.4688) (0.4127) (0.4769) 

Observations 408 408 408 408 408 408 408 408 408 408 
Number of Countries 40 40 40 40 40 40 40 40 40 40 
Instrument Count 37 39 41 43 45 27 33 39 45 51 
AR(1) p-value 0.0066 0.0807 0.1025 0.0822 0.1140 0.0149 0.0965 0.0807 0.0970 0.0667 
AR(2) p-value 0.5454 0.7074 0.3638 0.6556 0.6003 0.9947 – 0.7074 0.5226 0.6388 
Sargan p-value 0.7301 0.7904 0.5763 0.7440 0.7294 0.7369 0.8070 0.7904 0.8022 0.8646 
Hansen p-value 0.2075 0.1582 0.0512 0.0839 0.1241 0.2094 0.3022 0.1582 0.1668 0.3384 
Mean ρ in Panels 0.01 0.00 0.01 0.01 0.02 0.09 0.01 0.00 0.02 0.02 
P-CD-test 1.316 0.883 2.632 *** 2.698*** 4.281 *** 12.413 *** 0.985 0.883 3.18 *** 4.068 *** 

The dependent variable is the log of real GDP per capita. Robust standard errors in parentheses; CD is cross-sectional dependence; ρ is the correlation between panel 
units; OLS is Ordinary Least Squares; FE is Fixed Effects; *** p<0.01, ** p<0.05, * p<0.1   

Table B.3 
Lag sensitivity of endogenous and exogenous variables for the level equations   

Lags of endogenous variables Lags of exogenous variables 

Variables Lags (1 1) Lags (1 2)* Lags (1 3) Lags (1 4) Lags (0 0)* Lags (0 1) 

lnYt− 1  0.8663*** 0.9058*** 0.9196*** 0.9149*** 0.9058*** 0.9458***  
(0.0460) (0.0346) (0.0540) (0.0469) (0.0346) (0.0296) 

lneft  0.7061* 0.6825* 0.5727 0.5841* 0.6825* 0.0900  
(0.3869) (0.3808) (0.3534) (0.3174) (0.3808) (0.2273) 

lneft− 1  0.0404 0.0093 − 0.0004 − 0.0030 0.0093 0.0779  
(0.0420) (0.0876) (0.0865) (0.0957) (0.0876) (0.0779) 

dlnIEt  0.8414 1.0802 1.2624 1.1547 1.0802 0.7884  
(1.3167) (1.1503) (1.3474) (1.2143) (1.1503) (1.0602) 

lnef* dlnIE  ¡0.2029** ¡0.1853** ¡0.1522 ¡0.1542* ¡0.1853** ¡0.0470  
(0.0972) (0.0935) (0.0967) (0.0814) (0.0935) (0.0549) 

lns  0.0435** 0.0355** 0.0348 0.0365* 0.0355** 0.0305***  
(0.0214) (0.0171) (0.0270) (0.0198) (0.0171) (0.0096) 

lng  − 0.0620 − 0.0485 − 0.0450 − 0.0443* − 0.0485 − 0.0347*  
(0.0433) (0.0371) (0.0370) (0.0239) (0.0371) (0.0178) 

lnTOP  0.0270 0.0072 0.0013 0.0094 0.0072 0.0082  
(0.0168) (0.0248) (0.0362) (0.0302) (0.0248) (0.0292) 

INF  − 0.0011 − 0.0002 0.0001 0.0004 − 0.0002 − 0.0004  
(0.0024) (0.0013) (0.0012) (0.0011) (0.0013) (0.0011) 

dlnLAB  − 0.0293 − 0.0161 − 0.0383 − 0.0755 − 0.0161 − 0.0137  
(0.1479) (0.1334) (0.1692) (0.1231) (0.1334) (0.1112) 

i.OPC  0.1552* 0.0834 0.0480 0.0479 0.0834 0.0535  
(0.0795) (0.0743) (0.0452) (0.0352) (0.0743) (0.0630) 

year2008  − 0.0002 0.0032 0.0079 0.0047 0.0032 0.0100  
(0.0172) (0.0211) (0.0289) (0.0213) (0.0211) (0.0148) 

year2009  − 0.0195 − 0.0209 − 0.0223 − 0.0271 − 0.0209 − 0.0365**  
(0.0248) (0.0212) (0.0234) (0.0168) (0.0212) (0.0146) 

Constant 0.7913 0.6205 0.5380 0.4919 0.6205 0.2196  
(0.4979) (0.4688) (0.4365) (0.3128) (0.4688) (0.2607) 

Observations 408 408 408 408 408 408 
Number of Countries 40 40 40 40 40 40 
Instrument Count 37 39 41 43 39 44 
AR(1) p-value 0.0035 0.0807 0.0086 0.0001 0.0807 0.0073 
AR(2) p-value 0.4746 0.7074 0.7441 0.6955 0.7074 0.3663 
Sargan p-value 0.5843 0.7904 0.7908 0.7402 0.7904 0.5768 
Hansen p-value 0.0408 0.1582 0.0512 0.0839 0.1582 0.1049 
Mean ρ in Panels 0.00 0.00 0.02 0.02 0.00 0.07 
P-CD-test 0.483 0. .883 3.00*** 3.16*** 0. .883 8.891*** 

The dependent variable is the log of real GDP per capita. Robust standard errors in parentheses; CD is cross-sectional dependence; ρ is the correlation between panel 
units; OLS is Ordinary Least Squares; FE is Fixed Effects; *** p<0.01, ** p<0.05, * p<0.1.   
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Table B.4 
Sensitivity with respect to time I   

Sub-sample 1994–2014 (i.e. Excluding first 3 and last 3 years) Sub-sample 1991–2017 excluding 2003, 2004 && 2005 

Variables OLS: Upper 
bound 

FE: Lower 
bound 

Two-step 
Difference 
GMM 

Two-step GMM 
with Nonlinear 

Iterated 
Difference 
GMM 

Two-step 
System GMM 

OLS: Upper 
bound 

FE: Lower 
bound 

Two-step 
Difference 
GMM 

Two-step GMM 
with Nonlinear 

Iterated 
Difference 
GMM 

Two-step 
System GMM 

lnYt− 1  0.9869*** 0.8772*** 0.8606*** 0.8539*** 0.8408*** 0.9182*** 0.9788*** 0.9058*** 0.9314*** 0.9306*** 0.9673*** 0.9160***  
(0.0042) (0.0285) (0.0788) (0.0496) (0.2024) (0.0423) (0.0045) (0.0254) (0.1109) (0.1086) (0.0853) (0.0371) 

lneft  − 0.0499 0.3208 0.5537* 0.5501** 0.6495 0.5414 − 0.0591 − 0.0458 0.4556* 0.4565* 0.5095** 0.0930  
(0.0567) (0.2331) (0.2854) (0.2806) (0.5198) (0.4653) (0.0621) (0.2279) (0.2503) (0.2442) (0.2458) (0.2814) 

lneft− 1  0.0539 0.0588* 0.0449 0.0447 0.0248 0.0408 0.0530 0.0953** 0.0477 0.0481 0.0662 0.0715  
(0.0551) (0.0312) (0.0625) (0.0605) (0.0631) (0.0665) (0.0604) (0.0397) (0.0557) (0.0553) (0.0670) (0.0762) 

dlnIEt  0.3301 0.7696 1.0083 0.9892 1.2129 1.3607 1.0171* 1.3192 2.4070 2.3889* 2.2918 1.4033  
(0.4463) (0.7878) (0.8876) (0.8567) (1.0934) (0.9386) (0.5946) (1.0943) (1.4767) (1.4358) (1.6415) (1.5236) 

lnef* dlnIE  − 0.0017 − 0.0966* ¡0.1402* ¡0.1387* ¡0.1674 ¡0.1548 0.0006 − 0.0037 ¡0.1299* ¡0.1295* ¡0.1357* ¡0.0476  
(0.0029) (0.0511) (0.0743) (0.0731) (0.1278) (0.1193) (0.0027) (0.0473) (0.0708) (0.0698) (0.0695) (0.0760) 

lns  0.0150*** 0.0279*** 0.0549*** 0.0545*** 0.0584* 0.0394*** 0.0208*** 0.0256*** 0.0616*** 0.0620*** 0.0577*** 0.0542***  
(0.0038) (0.0082) (0.0143) (0.0147) (0.0332) (0.0101) (0.0040) (0.0085) (0.0121) (0.0116) (0.0132) (0.0183) 

lng  − 0.0102** − 0.0260 − 0.1674* − 0.1560** − 0.1669 − 0.0590** − 0.0169*** 0.0084 − 0.2471* − 0.2477* − 0.2740** − 0.0618**  
(0.0045) (0.0430) (0.0986) (0.0709) (0.2852) (0.0241) (0.0049) (0.0386) (0.1388) (0.1317) (0.1183) (0.0245) 

lnTOP  0.0096 0.0216 0.0290* 0.0287* 0.0358* − 0.0022 0.0047 0.0017 0.0317 0.0314 0.0328 − 0.0082  
(0.0058) (0.0179) (0.0152) (0.0151) (0.0202) (0.0408) (0.0067) (0.0166) (0.0227) (0.0222) (0.0220) (0.0425) 

INF  0.0000 − 0.0007** 0.0003 0.0003 0.0008* 0.0020 0.0001 − 0.0004 0.0032* 0.0032* 0.0025 0.0014  
(0.0002) (0.0003) (0.0016) (0.0016) (0.0005) (0.0016) (0.0002) (0.0003) (0.0018) (0.0016) (0.0021) (0.0030) 

dlnLAB  0.0328 0.1228* − 0.0682 − 0.0667 − 0.2718 − 0.1465 − 0.0190 0.1018 − 0.1245 − 0.1240 − 0.1752 − 0.1176  
(0.1390) (0.0660) (0.1532) (0.1526) (0.7681) (0.1553) (0.1949) (0.0932) (0.1247) (0.1233) (0.1287) (0.1183) 

i.OPC  0.0013 – 0.0117 − 0.0003 0.1295 0.0640 0.0076 – 0.0798 0.0855 0.0602 0.0708  
(0.0040) – (0.1762) (0.1816) (0.2081) (0.0621) (0.0047) – (0.1920) (0.1786) (0.2050) (0.0553) 

year2008  0.0012 0.0019 − 0.0217 − 0.0214 − 0.0317 − 0.0106 0.0065 0.0065 − 0.0339*** − 0.0338*** − 0.0311** − 0.0124  
(0.0042) (0.0038) (0.0185) (0.0194) (0.0434) (0.0145) (0.0042) (0.0047) (0.0118) (0.0114) (0.0131) (0.0162) 

year2009  − 0.0287*** − 0.0248*** − 0.0198 − 0.0189 − 0.0169 − 0.0260 − 0.0239*** − 0.0235*** − 0.0323 − 0.0320 − 0.0318 − 0.0415***  
(0.0056) (0.0056) (0.0170) (0.0169) (0.0344) (0.0210) (0.0055) (0.0058) (0.0198) (0.0196) (0.0250) (0.0128) 

Constant − 0.0928 0.6923 2.7114** 2.5952** 2.5595 0.6746* − 0.0460 0.1518 3.0859** 3.1020** 3.5756*** 0.3784  
(0.0571) (0.6829) (1.2392) (1.0582) (3.3141) (0.3585) (0.0654) (0.6522) (1.5159) (1.5028) (1.2866) (0.3126) 

Observations 370 370 370 370 370 370 312 312 312 312 312 312 
R-squared 0.9993 0.952 – – – – 0.999 0.969 – – – – 
Number of ID 40 40 40 40 40 40 40 40 40 40 40 40 
Instrument 

Count 
– – 30 31 30 39 – – 30 31 30 39 

AR(1) p-value – – 0.0024 0.0000 0.0015 0.1708 – – 0.0470 0.0846 0.0868 0.0000 
AR(2) p-value – – 0.2634 0.3681 0.1098 0.6782 – – 0.3892 0.4436 0.4756 0.6279 
Hansen p- 

value 
– – 0.1957 0.1023 0.7307 0.0579 – – 0.0695 0.0957 0.6951 0.0296 

Mean ρ in 
panels 

0.02 0.00 0.31 0.31 0.31 0.34 0.04 0.02 0.23 0.23 0.23 0.30 

P-CD-test 2.655*** .018 46.566*** 46.952*** 47.146*** 49.366*** 4.42*** 2.329** 32.265*** 32.217*** 31.78*** 39.945*** 

The dependent variable is the log of real GDP per capita; Robust standard errors in parentheses; CD is cross-sectional dependence; ρ is the correlation between panel units; OLS is Ordinary Least Squares; FE is Fixed Effects; 
*** p<0.01, ** p<0.05, * p<0.1  
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Table B.5 
Sensitivity with respect to time II.   

Sub-sample 1994–2012 (i.e. Excluding first 3 and last 5 years) Sub-sample 1996–2014 (i.e. Excluding first 5 and last 3 years) 

Variables OLS: Upper 
bound 

FE: Lower 
bound 

Two-step 
Difference 
GMM 

Two-step GMM 
with Nonlinear 

Iterated 
Difference 
GMM 

Two-step 
System GMM 

OLS: Upper 
bound 

FE: Lower 
bound 

Two-step 
Difference 
GMM 

Two-step GMM 
with Nonlinear 

Iterated 
Difference 
GMM 

Two-step 
System GMM 

lnYt− 1  0.9853*** 0.8733*** 0.8786*** 0.8794*** 0.8775*** 0.9392*** 0.9868*** 0.8601*** 0.8551*** 0.8479*** 0.9530*** 0.9351***  
(0.0047) (0.0318) (0.0991) (0.0809) (0.0447) (0.0250) (0.0042) (0.0301) (0.0648) (0.0453) (0.0437) (0.0381) 

lneft  − 0.0330 0.3410 0.6499* 0.6505* 1.0852** 0.3822 − 0.0492 0.3388 0.6146** 0.6157** 0.4951 0.3503  
(0.0589) (0.2712) (0.3464) (0.3481) (0.4671) (0.3099) (0.0566) (0.2448) (0.2695) (0.2666) (0.3749) (0.3573) 

lneft− 1  0.0413 0.0786* 0.0511 0.0512 0.0432 0.0297 0.0537 0.0513 0.0425 0.0417 0.0607 0.0907  
(0.0573) (0.0429) (0.0673) (0.0599) (0.0402) (0.0732) (0.0550) (0.0313) (0.0425) (0.0440) (0.0383) (0.0735) 

dlnIEt  0.1973 0.4585 1.0623 1.0606 1.9134** 0.4596 0.3242 0.7609 1.0139 1.0100 3.5085*** 1.1424  
(0.4772) (0.8665) (0.8698) (0.9189) (0.7834) (1.2616) (0.4452) (0.7543) (0.7040) (0.6988) (1.3374) (0.9669) 

lnef* dlnIE  − 0.0030 − 0.1003 ¡0.1656* ¡0.1659* ¡0.2979** ¡0.1113 − 0.0018 − 0.1060* ¡0.1617** ¡0.1622** ¡0.1201 ¡0.1149  
(0.0031) (0.0632) (0.0959) (0.0955) (0.1227) (0.0746) (0.0029) (0.0551) (0.0717) (0.0721) (0.0951) (0.0885) 

lns  0.0179*** 0.0327*** 0.0612*** 0.0612*** 0.0548*** 0.0378** 0.0150*** 0.0271*** 0.0525*** 0.0519*** 0.0400*** 0.0359***  
(0.0041) (0.0088) (0.0187) (0.0182) (0.0147) (0.0148) (0.0038) (0.0092) (0.0167) (0.0163) (0.0125) (0.0112) 

lng  − 0.0132*** − 0.0464 − 0.2247* − 0.2255* − 0.1010 − 0.0409* − 0.0102** − 0.0048 − 0.1755 − 0.1630** − 0.2282** − 0.0516**  
(0.0049) (0.0488) (0.1336) (0.1272) (0.0945) (0.0247) (0.0046) (0.0484) (0.1074) (0.0712) (0.0895) (0.0255) 

lnTOP  0.0037 0.0146 0.0259 0.0262 − 0.0045 − 0.0276 0.0095 0.0250 0.0432** 0.0433** 0.0546** − 0.0061  
(0.0059) (0.0223) (0.0319) (0.0292) (0.0216) (0.0262) (0.0061) (0.0195) (0.0193) (0.0196) (0.0214) (0.0287) 

INF  0.0001 − 0.0008* − 0.0003 − 0.0003 0.0006 0.0010 0.0000 − 0.0009* − 0.0007 − 0.0007 − 0.0022*** 0.0013  
(0.0002) (0.0004) (0.0015) (0.0011) (0.0008) (0.0014) (0.0003) (0.0005) (0.0013) (0.0013) (0.0009) (0.0013) 

dlnLAB  − 0.0475 0.0495 − 0.0398 − 0.0451 − 0.1975 − 0.0149 0.0339 0.1103 − 0.0723 − 0.0742 0.0252 − 0.0696  
(0.1198) (0.0975) (0.1606) (0.1568) (0.1365) (0.2293) (0.1395) (0.0675) (0.1413) (0.1439) (0.3175) (0.1354) 

i.OPC  0.0034  0.0279 0.0267 0.0388 0.0423 0.0013  0.0851 0.0800 − 0.0520 0.0355  
(0.0044)  (0.2197) (0.2143) (0.1683) (0.0497) (0.0040)  (0.1688) (0.1657) (0.2474) (0.0557) 

year2008  − 0.0011 0.0021 − 0.0225 − 0.0228 − 0.0124 − 0.0095 0.0012 0.0034 − 0.0195 − 0.0190 0.0012 − 0.0025  
(0.0043) (0.0039) (0.0170) (0.0179) (0.0105) (0.0186) (0.0043) (0.0045) (0.0170) (0.0173) (0.0094) (0.0161) 

year2009  − 0.0312*** − 0.0254*** − 0.0218 − 0.0217 − 0.0184* − 0.0375 − 0.0287*** − 0.0241*** − 0.0140 − 0.0130 − 0.0104 − 0.0292  
(0.0058) (0.0056) (0.0152) (0.0156) (0.0101) (0.0265) (0.0057) (0.0055) (0.0189) (0.0182) (0.0126) (0.0192) 

Constant − 0.0726 1.0874 3.4240* 3.4305* 1.4076 0.3615 − 0.0923 0.3678 2.7703** 2.6251*** 3.5123*** 0.5773  
(0.0601) (0.7730) (1.8705) (1.7858) (1.2145) (0.3299) (0.0597) (0.7652) (1.3065) (1.0186) (1.1980) (0.3820) 

Observations 327 327 327 327 327 327 365 365 365 365 365 365 
R-squared 0.9993 0.942 – – – – 0.999 0.948 – – – – 
Number of ID  39 39 39 39 39  40 40 40 40 40 
Instrument 

Count 
– – 30 31 30 39 – – 30 31 30 39 

AR(1) p-value – – 0.0268 – 0.1007 0.0516 – – 0.0026 0.000 0.000 0.1145 
AR(2) p-value – – 0.2265 0.0097 0.5166 0.3088 – – 0.2199 0.2520 0.6098 0.6311 
Hansen p- 

value 
– – 0.3308 0.0497 0.8720 0.0432 – – 0.4896 0.1465 0.6848 0.0342 

Mean ρ in 
panels 

0.01 0.00 0.28 0.28 0.32 0.31 0.02 0.00 0.30 0.31 0.31 0.35 

P-CD-test 2.385** 0.11 42.277*** 42.241*** 46.645*** 45.353*** 2.653*** 0.05 46.008*** 46.777*** 45.607*** 50.146*** 

The dependent variable is the log of real GDP per capita. Robust standard errors in parentheses; CD is cross-sectional dependence; ρ is the correlation between panel units; OLS is Ordinary Least Squares; FE is Fixed Effects; 
*** p<0.01, ** p<0.05, * p<0.1  
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Table B.6 
Effect of energy efficiency on Economic Growth (using AMG Estimator)  

Variables Model 1 Model 2 Model 3 Model 4 

1st lag of GDP (lnYt− 1)  0.3383** 0.3679** 0.3152** 0.3029  
(0.1326) (0.1469) (0.1309) (0.2810) 

Energy Efficiency (lneft)  1.4893 1.5088* 1.6984* 6.5526**  
(0.9092) (0.8596) (0.9516) (3.2478) 

1st lag of Energy Efficiency (lneft− 1)  − 0.1157 − 0.1366 − 0.1816 − 0.6966*  
(0.1368) (0.1645) (0.1244) (0.3884) 

Income Inequality (dlnIEt)  0.2122 0.3689 0.9822 3.4289  
(1.0485) (0.8880) (1.0584) (2.8763) 

Energy Efficiency*Income Inequality ( 
lnef*dlnIE)  

− 0.3799* − 0.4049* − 0.4406* − 1.7019**  

(0.2258) (0.2337) (0.2364) (0.8437) 
Capital Formation (lns)  0.0549*** 0.0476*** 0.0566*** 0.1815  

(0.0149) (0.0140) (0.0159) (0.1211) 
Population (lng)  − 0.9890*** − 0.8608*** − 0.8787*** − 1.4582**  

(0.2025) (0.2413) (0.1789) (0.6033) 
Trade Openness (lnTOP)  0.0070 0.0228 0.0069 0.1114**  

(0.0357) (0.0355) (0.0206) (0.0535) 
Inflation (INF)  − 0.0000 − 0.0006 0.0002 0.0016  

(0.0009) (0.0010) (0.0008) (0.0023) 
Labour Force Participation Rate (dlnLAB)  − 10.6432 − 13.0791 − 10.4003 − 18.1527  

(9.3436) (13.4982) (9.3455) (17.4385) 
Oil Producing Pountry (i.OPC)  0.0000 – – –  

(0.0000) – – – 
Year 2008  0.0004  0.4438***   

(0.0105)  (0.0350) 
Year 2009   0.5155*** 0.4726***    

(0.0055) (0.0141) 
Constant 19.1658*** 17.1534*** 17.1227*** 23.3648***  

(2.9949) (3.5911) (2.9176) (8.0829) 
Mean ρ in the Panel 0.00 0.00 0.00 0.00 
P-CD-test − 1.032 0.17 − 0.749 − 0.588 
Wald Chi2 Test 56.04*** 43.78*** 36891.56*** 33350.12*** 

The dependent variable is the log of real GDP per capita. Robust standard errors in parentheses; CD is cross-sectional dependence; ρ is the correlation between 
panel units; AMG is Augmented Mean Group; ***p < 0.01, **p < 0.05, *p < 0.1. 
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