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February 10, 2023

Abstract

High temperatures hinder learning. An effective solution is to control the environment.

However, technologies such as air conditioning are seldom adopted in developing coun-

tries. Information and Communication Technologies (ICTs) are more widely available

and could offer an alternative solution by increasing the amount of instruction, allow-

ing the re-allocation of activities, boosting productivity, or improving the quality of

instruction. Using data from Colombia, we confirm that heat affects test scores, and

we show that ICTs compensate up to 15 percent of this effect when used by teachers

to teach and for pedagogic purposes.

Keywords: Weather and learning, Adaptation, Climate Change, Economics of Ed-

ucation, Information and Communication Technologies (ICT), Developing Country,

Computer Programs

JEL Codes: H54, I2, J24, O15, Q54, Q56

∗We gratefully acknowledge financial support for this research from the Environment for Development
(EfD) Initiative under project MS-524 “Adaptation mechanisms against negative effects of weather on school-
ing outcomes”. We thank Cyndi Berk and Gloria Helfand for editorial assistance, and Viz Taraz, two
anonymous reviewers, and several participants of the 2022 NAREA and SEA conferences for constructive
comments to the manuscript.
†Corresponding author. Department of Economics and Finance, and Department of Environmental Stud-

ies, Salisbury University. 1101 Camden Ave, Salisbury, MD 21801. lxvillalobos@salisbury.edu.
‡Universidad de Los Andes School of Management (UASM).



1 Introduction

High temperatures make learning more difficult (Villalobos, 2017; Cho, 2017; Park et al.,

2018, 2020, 2021; Park, 2022; Garg et al., 2020; Zivin et al., 2020; Heal and Park, 2020).

One explanation is that when exposed to high temperatures, pupils experience discomfort,

fatigue, and cognitive impairment, due to the biological response of the body to temperatures

above or below the thermal comfort zone of 64–72◦F (18–22◦C) (Heal and Park, 2020; Park,

2022). In addition, high temperatures might affect the quality and quantity of instruction

by decreasing school attendance (Villalobos, 2017), by affecting teachers’ productivity, or by

reducing class and self-study time (Alberto et al., 2021).

Controlling the environment at which students take lessons and tests is an effective solu-

tion (Park et al., 2020). However, technologies such as air conditioning (AC) or climate-smart

infrastructure are seldom adopted in developing countries. For example, while over 80 per-

cent of households have AC the United States, Korea, and Japan, this share is less than 20

percent for emerging economies like Mexico or Brazil (IEA, 2018). Furthermore, AC is un-

equally distributed and it is an energy-intensive technology that, unless sourced from clean

energy, exacerbates the climate emergency.

In this paper, we study whether school-level access to information and communication

technologies (ICTs)—computers, laptops, and tablets—enables adaptation responses to the

effects of heat on test scores. There are several mechanisms through which ICTs can directly

increase schooling outcomes. For example, (i) by increasing the overall amount of instruction

students receive, (ii) by boosting productivity as they could offer the advantage of self-paced

instruction and individualization of the content, facilitate the acquisition of information, and

boost student motivation and engagement, (iii) by enabling the re-allocation of activities,

and (iv) by improving quality of instruction and pedagogical practices (Cristia et al., 2017;

Bulman and Fairlie, 2016).

We stress that these mechanisms could be particularly advantageous in facilitating in-

dividual adaptation to heat. Our hypothesis is that ICTs allow students to substitute a
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missed or a poor-quality lecture scheduled during extreme heat for instruction under better

conditions. In addition, if used for pedagogical purposes, ICTs could compensate for lower

productivity caused by high heat. Although some of the direct effects of ICTs on learn-

ing have been documented, their moderating role in dissociating weather conditions from

learning time has not been explored.

Our context is students in Colombia, a middle-income country with annual average tem-

peratures of 25◦C (77◦F), where closing the technological gap has been a central policy

objective in recent years. With historically low rates of ICTs per-capita, access to ICTs

in schools has substantially improved since 2012, partially due to a government program—

Computadores para Educar (CPE)—that has delivered more than two million desktops,

laptops, and tables to public schools in the entire country (Luxon, 2020). Situated in pre-

pandemic times of in-person instruction, we study the moderating effect of improving school-

level access to ICTs on the heat-learning phenomenon.

Our data include the universe of third, fifth, and ninth grade test scores from a stan-

dardized test (Pruebas Saber) during 2012–2016 at the school-grade-subject-year level. We

exploit the exogenous variation in weather conditions to explain differences in test scores

over time using a two-way fixed-effects model. Then, we test whether ICTs mute the heat

effect using time varying information on ICTs penetration and devices’ use for each school.

We find that, in line with previous literature, both heat during the year prior to the

test and high temperatures during the day of the test decrease test scores. On average, one

additional Celsius degree during the year prior to the test lowers scores by 0.14 standard

deviations. One additional day above 21◦C decreases scores by a magnitude of 0.001–0.004

standard deviations with respect to an additional day at 17–21◦C. The effects are statistically

significant for math and reading scores, students in urban and rural areas, and public and

private schools.

Next, we show that ICTs are a partially effective adaptation solution to the effects of

heat. Increasing the number of ICTs per-capita from zero to one decreases the heat effect
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by 9 percent on average, but up to 15 percent for rural areas. This compensatory effect

of ICTs is observed only for schools where ICTs are used for pedagogic purposes, and in

schools where ICTs are used by teachers to teach. These ICTs uses are consistent with the

idea that ICTs improve the quality of instruction during times of extreme heat. In contrast,

we do not find a moderating effect of ICTs through the amount of instruction, re-allocation

of activities, or productivity mechanisms.

These findings are a contribution to the literature on the short-term effects of heat on

human capital formation in the context of a warm developing country (Park et al., 2021;

Garg et al., 2020; Villalobos, 2017). We show that, consistently with previous findings, heat

is a factor contributing to the gaps in human capital formation in Colombia. In addition, to

the best of our knowledge, this is the first study to document adaptation capacity through

virtual technology. We show that in-school ICTs provide incomplete, but non-negligible,

adaptation. Still, complementary policies are required to fully adapt to the effect of heat on

school performance. For example, home access to ICTs could enhance further adaptation.

We also contribute to the literature on the benefits of providing schools with ICTs.

While the effects of ICTs on schooling outcomes have been widely studied finding mixed

results (McEwan, 2015; Bulman and Fairlie, 2016; Cristia et al., 2014; Yanguas, 2020; Comi

et al., 2017; Barrera-Osorio and Linden, 2009; Rodŕıguez et al., 2011), we look at a new

mechanism through which ICTs could improve schooling outcomes. If heat hinders learning

but ICTs compensate some of this effect, observed test scores will be higher compared to

the counterfactual of high temperatures and no access to ICTs.

This paper is organized as follows: Section 2 describes the data, Section 3 presents

the empirical framework, Section 4 reports the results, and Section 5 provides concluding

remarks.
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2 Data

We rely on three sources of data: Pruebas Saber test scores from ICFES (Instituto Colom-

biano para el Fomento de la Educación Superior), ICTs penetration from DANE (Depar-

tamento Administrativo Nacional de Estad́ıstica), and high resolution weather information

from the CHC (Climate Hazards Center). We detail each source in the next subsections.

2.1 Test scores

Pruebas Saber are standardized tests administered every year to evaluate the quality of

primary and secondary education (ICFES, 2020). The annual test is taken on the same

day nationally, roughly between September and October. We obtained the precise date on

which each test was taken from public on-line records. The test is mandatory (census) for

all students of third, fifth, and ninth grades (typically ages 9, 11, and 15).

Third grade students are randomly selected to take one test (math or reading), while

students in fifth and ninth grades are randomly selected to take two out of four subjects:

math, reading, science or civic education. We focus on math and reading as they are con-

sistently available for all grades. During 2012–2016, between 50 and 60 percent of fifth and

ninth graders took either math or reading. Importantly, because the tests are mandatory

and students are not allowed to choose subjects, there is no self-selection on who takes what

exams.

The dependent variable is the average score by school-grade-subject-year, standardized

to have zero mean and variance equal to one at the grade-subject-year level. The sample

includes the universe of scores in every school of the country (15,220 institutions) between

2012 and 20161. Therefore, this is a representative sample of test scores at the national level.

1We focus on the 2012–2016 period because rules changed in 2017, making subsequent rounds of tests
incomparable with previous years. In particular, science and civics exams were removed for fifth and ninth
graders, and both math and reading became mandatory for third graders.
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2.2 ICT penetration and use

We obtain official and public data on ICT penetration from DANE (2014). Those data

are collected annually through a questionnaire completed by every school in the country.

We define the variable ICTs per-capita as the number of ICT devices (laptops, desktops,

tablets) that are available in school s in year t, divided by the number of students in school

s and year t. Importantly, this survey started to collect information on ICTs only after year

2014. Therefore, this part of our analysis restricts the sample to years 2014–2016.

This survey contains detailed information on the use of ICTs. We obtain school-level

time-varying data on (i) whether students use the ICTs, (ii) whether ICTs are used daily vs

less frequently, (iii) whether students can access the ICTs during class-time only; (iv) whether

there is internet available, (v) whether the ICTs have pedagogic software; (vi) whether ICTs

are used for pedagogic purposes, and (vii) whether ICTs are used by teachers to teach. We

group these characteristics into four categories that broadly correspond to the mechanisms

mentioned in Section 1: Amount of instruction (i and ii), Re-allocation of activities (iii),

Productivity effects (iv and v), and Quality of instruction (vi and vii).

2.3 Weather Data

We obtained municipality-day level weather data from the Climate Hazards Center

(CHC). For temperature, we use the Climate Hazards InfraRed Temperature with Station

data (CHIRTS) (CHC, 2000b). Similarly, precipitation data come from the Climate Hazards

InfraRed Precipitation with Station product (CHIRPS) (CHC, 2000a). This is a quasi-global

data set that combines satellite imagery and in-situ station data to create a gridded tem-

perature and rainfall time series at the 0.05 resolution (approximately 5 Km2) (Funk et al.,

2015).

From this daily data we compute the maximum average temperature and total precip-

itation during the year prior to the test, and the maximum temperature and precipitation

on the test-day. To test for non-linear effects, we also compute the number of days that fall
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into each of the 4◦C temperature bins, using the maximum daily temperature.

2.4 Sample and descriptive statistics

Our unit of observation is the school-grade-subject-year. For example, we observe the

average test score that 3rd-graders in school s obtained for math in year t. We have informa-

tion for almost 76,000 mean test scores in over 15,000 schools in 1,115 municipalities (99.5

percent of all municipalities in Colombia).

On average, the temperature was 25◦C during the year prior to the test, and 26◦C on

the day of the test (Table 1). On average, temperatures were higher than 29◦C during 116

days per year. There is no difference between weather conditions at which math and reading

tests were taken. Instead, rural areas tend to be warmer and score lower on tests.

On average, there are 0.16 ICTs per-capita, with rural areas having a higher ratio of 0.21.

This is not surprising given that the program Computadores para Educar has channeled

substantial resources to equip these schools with ICTs. From the variables that classify the

different uses given to ICTs, we observe that virtually all schools allow students to use the

technology, although there is substantial variation in the frequency with which they do. For

about three quarters of the observations students have access to ICTs during class time only.

About 80% of the observations are in schools where internet is available. In less than half

of the observations there is pedagogic software available. Almost every observation is in a

school that uses ICTs for pedagogic purposes, and in most cases ICTs are used by teachers

to teach. The within-school variation in these variables is what allows us to identify the

mechanism through which ICTs moderate the effect of heat on learning.

Figure 1 depicts the relationship between test scores and cumulative temperature using

all school-grade-subject-year observations. Each dot represents the average score for each

temperature value rounded by tenths of a degree. The fitted values curve suggests a negative

relationship between heat exposure and test scores.
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3 Empirical Strategy

We exploit the exogenous variation in weather conditions to explain differences in school-

grade-subject test scores over time, using a fixed-effects model. We begin by estimating the

average effect of heat on test scores using Model 1.

Scorejgsmt = β0 + β1Tyearmt + β2Tdaymt + β3Pyearmt + β4Pdaymt+

µjgs + θt + εjgsmt

(1)

The dependent variable is the standardized test score for subject j (math or reading),

grade g (3rd, 5th, 9th) in school s, located in municipality m, in year t. We define cumulative

heat exposure, Tyear, as the average maximum temperature in municipality m during the

year prior to the test. As control variables, we include the maximum temperature on the

day of the test Tday, the total precipitation during the year prior to the test Pyear, and

precipitation on the test day Pday. µjgs are school-grade-subject fixed-effects that control

for non-observable time-invariant characteristics, and θt are year fixed-effects that control

for annual shocks that may affect test scores in all schools.

Next, we test for non-linear effects by including the number of days that fall in various

temperature ranges (bins) as defined in Model 2. We include the same set of control variables

as in Model 1.

Scorejgsmt = β0 + β1DaysBelow17◦Cmt + β2DaysIn[21− 25◦C)mt+

β3DaysIn[25− 29◦C)mt + β4DaysAbove29◦Cmt+

β5Pyearmt + β6Pdaymt + µjgs + θt + εjgsmt

(2)

The coefficients β1 to β4 can be interpreted as the impact of experiencing one additional

day with temperatures in the corresponding range, relative to an additional day with tem-

peratures between 17–21◦C. This model allows us to study non-linear effects of accumulated

heat on test scores.
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Next, we test whether ICTs moderate the effect of cumulative temperature on test scores

by including an interaction term Tyear×ICT (Model 3). We focus on the moderating effect

of ICTs on the cumulative temperature, because there is little that ICTs can do to mend

the effect of same test-day heat on scores.

Scorejgsmt = β0 + β1Tyearmt + β2ICTst + β3Tyearmt × ICTst+

β4Tdaymt + β5Pyearmt + β6Pdaymt+

µjgs + θt + εjgsmt

(3)

Observing ICTs per-capita at the school-year level rules out cross-sectional factors that

correlate with ICTs, such as quality of management, or school remoteness. Hence, our

identification comes from marginal changes in within-institution ICTs per-capita over time.

Still, a first order concern with Model 3 is that ICTs per-capita is not exogenous, potentially

introducing omitted variable bias. For example, if schools with poor infrastructure tend to

under-perform and invest less in ICTs, the coefficients of Model 3 could be biased.

To address this concern, we test whether the heat effects differ between schools with low

vs high levels of ICTs per-capita, defined with respect to the median value of ICTs per-

capita. The advantage of this approach is that ICTs per-capita is not directly introduced in

the model, avoiding the omitted variable bias. If there are no differences in the heat effects

between these two sub-samples, we could conclude that ICTs are not a moderating factor.

However, even if we do observe differences, we would still be unsure whether they can be

attributed to higher penetration of ICTs because this variable could be picking up effects of

other factors, such as changes in infrastructure investments.

To strengthen the case, we conduct a placebo test where we repeat this analysis for other

key inputs of education, including the number of teachers per-capita. We do not expect

to see any difference in the effect of heat on test scores by levels of teachers per-capita.

Although this placebo test is not conclusive, it might provide additional evidence in favor of

ICTs being the moderating factor of the effect of heat on learning.
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For this test of differences in the heat effect by levels of input, we create a dummy variable

indicating whether a school is within the lower 50-th percentile of the corresponding variable

distribution (ICTs per-capita or teachers per-capita). Then, we fully interact Model 2 with

this variable, and plot the coefficients of the interactions with the temperature bins2. These

coefficients measure whether the heat effect is different between types of schools for each

temperature bin.

In all specifications, we cluster the standard errors by municipality-year because this is

the level of variation in the weather data. In addition, since there could be correlation in

weather for nearby municipalities, in Table A2 we show that the results hold if we correct

the standard errors for spatial correlation between nearby municipalities within the same

year (Conley, 1999; Colella et al., 2019). We use a threshold of 100 Kilometers, which means

that the error of each municipality is assumed to be correlated with all municipalities located

within a radius of 100 Kilometers from its geometrical centroid.

4 Results

Table 2 presents our main results. In this table, we only present the coefficients for

cumulative heat and hot days, whereas the coefficients for the control variables are presented

in Table A1.

Panel A of Table 2 shows the linear average effect of an additional Celsius degree during

the year prior to the test on scores (Model 1). On average, a one degree hotter year decreases

scores by 0.14 standard deviations (SD). One additional degree decreases math scores by 0.17,

and reading by 0.11 SD. Interestingly, the point estimates for urban schools is larger than

for rural, and the effect for private is larger compared to public schools. Without being a

formal test, these results suggest that there are non-linearities in the heat effects according

to levels of ICTs: the lower the level of (ICTs per-capita, the stronger the effect of heat on

2This is equivalent to running to separate regressions, one for the sample of schools with low levels of
the input and the second for the ones with high levels, and plotting the differences in the coefficients. The
advantage of a fully interacted model is that it calculates the standard errors for these differences
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learning. In fact, private schools have almost half the number of (ICTs per-capita of public

schools (0.11 vs 0.19) and their heat effect is more than twice the one for public schools

(-0.22 vs -0.11 SD).

To put these magnitudes in context, we compare them with the effects of school-based

interventions on learning in developing countries. Avoiding annual exposure to one addi-

tional temperature degree from the mean value of 25.45 Celsius degrees is comparable to the

largest mean effects of the interventions reported in the literature, which include treatments

with computers or instructional technology (0.15 SD); teacher training (0.12); and smaller

classes, smaller learning groups within classes, or ability grouping (0.12) (McEwan, 2015).

Furthermore, the benefits of avoiding heat surpass those of monetary grants, nutritional

interventions, and school management treatments (McEwan, 2015).

Panel B of Table 2 tests for non-linear effects (Model 3). We find that test scores decrease

with more days at temperatures above 21◦C. An additional day with temperature within 21–

25◦C decreases scores by 0.002 SD, compared to an additional day within 17-21◦C. Additional

days at higher temperatures also decrease test scores by a similar magnitude (0.002–0.003

SD). One additional day at temperatures higher than 29◦C decreases math and reading

scores by 0.003 and 0.002 SD, respectively. These effects are identical to the ones found

by Garg et al. (2020) in India, although their comparison bin is 15–17◦C. Figure 2 presents

these results visually. The coefficients across the sub-samples are consistently in range of

0.001–0.004 SD.

We note that higher temperatures on the test-day also decrease scores (Table A1). On

average, one additional degree during the test decreases scores by 0.008 SD. Cumulative

precipitation increases test scores, whereas test-day precipitation has a positive effect.

Next, we focus the attention to ICTs as a moderating factor of the heat effect. Panel

A in Table 3 shows the coefficients for the variables of interest (Model 2), whereas Panel B

shows the marginal effects evaluated at the mean values of the explanatory variables. These

models are estimated using the sub-sample of years 2014–2016, when information on ICTs
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is available.

We first note that the marginal effect of the cumulative temperature for this sample is

consistently negative and statistically significant, and slightly higher in magnitude compared

to the estimates using the full sample. ICTs increase test scores, but this effect is not

statistically significant. The coefficient for the interaction between temperature and ICTs is

positive and significant in all sub-samples. On average, one ICT per-capita compensates the

effect of temperature on test scores by 0.02 SD, compared to zero ICTs per-capita. This is

equivalent to 9 percent of the average effect of temperature on test scores. This compensatory

effect is 11 percent for math, 15 percent for rural areas, and 11 percent for public schools.

Table 4 shows the marginal effect of temperature evaluated at different values of ICT per-

capita. The effect of temperature on test scores at zero ICT per-capita is 0.003 SD higher

compared to the effect at the mean value of ICT per-capita. This difference is statistically

significant at the conventional levels, and it is equivalent to 1.5 percent of the average effect

of temperature on test scores. This suggests that a school that invested in increasing ICTs

from zero units per student to the sample average of 0.16, already avoided lower test scores

due to high temperatures.

4.1 Placebo test

Figure 3 plots the difference in the heat effects between schools with low vs high levels

of ICTs (Panel A), and teachers (Panel B) per-capita. Whereas temperatures higher than

21◦ decrease test scores both for school with low and high levels of ICT per-capita (results

not shown), the effect is stronger (more negative) for schools with low levels of ICT per-

capita. These differences are statistically significant only for high temperatures, whereas

there is no difference at temperatures lower than 17◦. As expected, we do not find such a

difference in the heat effect between schools with low vs high levels of teachers per-capita.

This placebo test is reassuring evidence suggesting that ICTs—and not other important

education inputs—moderate the effect of heat on test scores.
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4.2 Mechanisms

To better understand the attenuation effect of ICTs, we run Model 3 but instead of

the variable ICT per-capita, we run separate models interacting each of the variables that

indicate the use given to ICTs (see Table 1, Panel D). We plot the interaction coefficient

for each of these models in Figure 4. The main message of this analysis is that quality of

instruction seems to be the mechanism through which ICTs moderate the effect of heat on

test scores. All other mechanisms, including the amount of instruction, the re-allocation of

activities, and the productivity effects do not seem to moderate the effect of heat on learning.

5 Discussion and Conclusions

In this paper we investigate the effect of exposure to high temperatures during a school

year on test scores, and the role of ICTs in adapting to these effects. We found that both

higher cumulative temperature and more days under high temperatures decrease scores, a

result that is consistent with previous findings in United States, South Korea, and India.

The benefit of avoiding heat is comparable to the most successful school-level interventions

in developing countries.

In addition, we detected an effect both for math and reading, urban and rural schools,

and public and private institutions. These results add evidence to the literature on the

impacts of environmental factors on schooling outcomes in the short run.

A key question is how to adapt to the negative effects of heat on learning. Notably,

air conditioning has lessened the negative effects of thermal stress in the United States

(Park et al., 2020). However, this technology is available only to a very limited extent in

developing countries (IEA, 2018), and a wider adoption of this energy intensive technology

might exacerbate emissions. In addition, AC tends to be unevenly distributed across income

levels, making evident the existence of a disparity in access to cooling devices (Pavanello

et al., 2021).
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We found that increasing ICTs from zero to one unit per-capita compensates the effects

of temperature by 0.02 SD for math, rural areas, and public institutions. Adaptation starts

to occur even at relatively low values of ICTs per-capita. Schools that increased ICTs from

zero to the sample mean of 0.16 units per-capita avoided a 1.5 percent decrease in test scores

that would have occurred due to heat. We conclude that, similarly to other countries, heat

hurts learning in Colombia, and ICTs provide incomplete, but non-negligible, capacity to

adapt.

This paper contributes to a relatively large literature on the factors that affect test perfor-

mance in developing countries. Other papers have found that factors such as infrastructure,

violence, and incentives for teachers are determinants of educational attainment and learning

outcomes. We find that heat is yet another factor contributing to the gaps in human capital

formation, and that in-school access to technological capital has the potential to mend part

of this effect, specifically when used to improve the quality of instruction.
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Table 1: Summary Statistics. Means and Standard Deviations (SD)

All Reading Math Urban Rural Public Private

(A) Outcome

Test score (standardized) -0.00 -0.00 -0.00 0.26 -0.41 -0.38 0.76
SD 1.00 1.00 1.00 0.99 0.88 0.76 0.99

(B) Cumulative heat

Temperature(C) 25.45 25.46 25.45 24.94 26.28 26.09 24.18
SD 4.91 4.91 4.91 5.22 4.31 4.55 5.34

(C) Temperature bins

Days below 17C 18.6 18.6 18.6 26.3 6.8 11.3 33.1
SD 45.2 45.2 45.2 51.2 30.2 37.2 55.2
Days within 17-21C 66.2 66.2 66.2 77.5 49.8 51.9 94.8
SD 103.7 103.7 103.7 109.2 93.1 94.0 115.6
Days within 21-25C 83.3 83.2 83.4 79.1 88.2 86.7 76.6
SD 110.2 110.2 110.3 109.2 111.1 112.4 105.6
Days within 25-29C 80.9 80.9 81.0 73.1 91.6 89.0 64.8
SD 93.9 93.9 93.9 92.1 94.6 95.5 88.2
Days above 29C 116.0 116.1 115.8 109.1 128.6 126.1 95.7
SD 146.2 146.2 146.2 147.8 143.6 146.0 144.6

(D) ICT penetration and use

ICTs per-capita 0.16 0.16 0.16 0.13 0.21 0.19 0.11
SD 0.20 0.20 0.20 0.17 0.23 0.22 0.11
Students use ICTs 1.00 0.99 1.00 0.99 1.00 1.00 0.99
SD 0.07 0.07 0.07 0.08 0.05 0.05 0.10
ICTs used daily 0.38 0.38 0.38 0.37 0.39 0.44 0.25
SD 0.48 0.48 0.48 0.48 0.49 0.50 0.43
Class-time ICTs access only 0.78 0.78 0.78 0.80 0.76 0.79 0.77
SD 0.41 0.41 0.41 0.40 0.42 0.41 0.42
Internet available 0.82 0.82 0.82 0.95 0.62 0.74 0.98
SD 0.39 0.39 0.39 0.22 0.49 0.44 0.15
ICTs have pedagogic software 0.41 0.41 0.41 0.44 0.36 0.40 0.42
SD 0.49 0.49 0.49 0.50 0.48 0.49 0.49
ICTs used for pedagogic purposes 1.00 1.00 1.00 1.00 1.00 1.00 0.99
SD 0.06 0.06 0.06 0.06 0.05 0.05 0.07
ICTs used by teachers to teach 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SD 0.11 0.11 0.11 0.11 0.11 0.11 0.10

(E) Control variables

Temperature on test day (C) 25.88 25.88 25.88 25.39 26.66 26.49 24.65
SD 5.02 5.03 5.02 5.29 4.51 4.72 5.37
Cumulative precipitation 6.06 6.06 6.05 5.81 6.38 6.34 5.49
SD 8.67 8.67 8.67 8.08 9.52 9.17 7.54
Precipitation on test day 1716.05 1716.37 1715.73 1539.32 1972.46 1867.38 1413.57
SD 979.38 979.60 979.16 896.01 1040.18 1030.50 785.20

Obs(municipios) 1,115 1,115 1,114 867 1,045 1,115 432
Obs(school-grade-subject) 75,983 38,002 37,981 45,436 27,727 48,176 27,807
Obs(school-grade-subject-year) 307,295 153,826 153,469 187,043 114,740 204,825 102,470
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Table 2: Effects of cumulative temperature on test scores

All sample Math Reading Urban Rural Public Private
(1) (2) (3) (4) (5) (6) (7)

(A) Cumulative Heat

Temperature (C) -0.1395∗∗∗ -0.1691∗∗∗ -0.1099∗∗∗ -0.1621∗∗∗ -0.0966∗∗∗ -0.1055∗∗∗ -0.2219∗∗∗

(0.0240) (0.0268) (0.0226) (0.0310) (0.0226) (0.0223) (0.0525)

(B) Hot days

Days below 17C 0.0020∗∗ 0.0026∗∗ 0.0014 0.0020∗∗ 0.0027∗∗∗ 0.0023∗∗ 0.0022∗∗∗

(0.0009) (0.0010) (0.0009) (0.0009) (0.0005) (0.0010) (0.0008)
Days within 21-25C -0.0016∗∗∗ -0.0019∗∗∗ -0.0013∗∗∗ -0.0020∗∗∗ -0.0011∗∗∗ -0.0012∗∗∗ -0.0025∗∗∗

(0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0003) (0.0006)
Days within 25-29C -0.0028∗∗∗ -0.0034∗∗∗ -0.0022∗∗∗ -0.0030∗∗∗ -0.0026∗∗∗ -0.0027∗∗∗ -0.0033∗∗∗

(0.0005) (0.0005) (0.0004) (0.0006) (0.0005) (0.0005) (0.0008)
Days above 29C -0.0024∗∗∗ -0.0030∗∗∗ -0.0019∗∗∗ -0.0031∗∗∗ -0.0016∗∗∗ -0.0021∗∗∗ -0.0036∗∗∗

(0.0007) (0.0008) (0.0006) (0.0010) (0.0006) (0.0007) (0.0012)

Municipios 5,514 5,512 5,512 4,173 5,108 5,507 1,735
N 300,109 149,864 150,245 183,226 112,783 201,451 98,658

Notes: The dependent variable is test scores standardized by school-grade-subject. Standard errors clustered by municipio
and year are in parenthesis. The omitted category in Panel B is Days within 17-21C. All regressions control for precipitation
during one year before the test, and day of the test maximum temperature and total precipitation. In addition, all models
include fixed effects for school-grade-subject, and year. * p<0.10 ** p<0.05 *** p<0.01.
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Table 3: Information and Communication Technologies (ICTs) as an adaptation response to the effects of heat on test scores

ICT Math Reading Urban Rural Public Private
subsample

(1) (2) (3) (4) (5) (6) (7)

(A) Coefficients

Temperature (C) -0.1998*** -0.2399*** -0.1598*** -0.2239*** -0.1531*** -0.1575*** -0.3023***
(0.0290) (0.0334) (0.0273) (0.0390) (0.0316) (0.0275) (0.0786)

ICTs per-capita -0.4527*** -0.6573*** -0.2458** -0.3338** -0.5523*** -0.4245*** -0.6977*
(0.1010) (0.1241) (0.0959) (0.1649) (0.1366) (0.0985) (0.4164)

ICTs per-capita × Temperature (C) 0.0180*** 0.0259*** 0.0100*** 0.0138** 0.0219*** 0.0170*** 0.0319**
(0.0037) (0.0045) (0.0035) (0.0057) (0.0052) (0.0036) (0.0158)

N 174,061 86,843 87,218 107,425 65,459 116,275 57,786

(B) Marginal effects at means

ICTs per-capita 0.0044 0.0010 0.0081 0.0097 0.0240 0.0204 0.0730
(0.0190) (0.0220) (0.0185) (0.0308) (0.0228) (0.0162) (0.0927)

Temperature (C) -0.1969*** -0.2356*** -0.1582*** -0.2220*** -0.1484*** -0.1542*** -0.2989***
(0.0291) (0.0335) (0.0273) (0.0391) (0.0317) (0.0275) (0.0788)

Notes: The dependent variable is test scores standardized by school-grade-subject. This subsample is restricted to years 2014-2016 when information
on ICTs is available. Standard errors clustered by municipality are in parenthesis. All models include fixed effects for school–grade–subject, and
year. * p<0.10 ** p<0.05 *** p<0.01.
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Table 4: Marginal effects of temperature evaluated at different values of ICT per-capita

ICT Math Reading Urban Rural Public Private
subsample

(1) (2) (3) (4) (5) (6) (7)

Temperature (C)
at ICTs per-capita = 0 -0.1998*** -0.2399*** -0.1598*** -0.2239*** -0.1531*** -0.1575*** -0.3023***

(0.0290) (0.0334) (0.0273) (0.0390) (0.0316) (0.0275) (0.0786)
Temperature (C)
at ICTs per-capita = mean -0.1969*** -0.2356*** -0.1582*** -0.2220*** -0.1484*** -0.1542*** -0.2989***

(0.0291) (0.0335) (0.0273) (0.0391) (0.0317) (0.0275) (0.0788)
Temperature (C)
at ICTs per-capita = mean+1SD -0.1963*** -0.2348*** -0.1579*** -0.2216*** -0.1480*** -0.1536*** -0.2989***

(0.0291) (0.0335) (0.0274) (0.0392) (0.0317) (0.0275) (0.0788)
Temperature (C)
at ICTs per-capita = 1 -0.1819*** -0.2141*** -0.1499*** -0.2101*** -0.1311*** -0.1404*** -0.2703***

(0.0296) (0.0343) (0.0277) (0.0402) (0.0322) (0.0277) (0.0820)
Change 0.0030 0.0043 0.0017 0.0019 0.0047 0.0033 0.0034
Pvalue 0.0000 0.0000 0.0044 0.0159 0.0000 0.0000 0.0429

Notes: Change is the difference between the marginal effect of temperature at ICTs per-capita = 0 and the marginal effect of temperature at
ICTs per-capita = mean. The dependent variable is test scores standardized by school-grade-subject. This subsample is restricted to years
2014-2016 when information on ICTs is available. Standard errors clustered by municipality are in parenthesis. All models include fixed effects
for school–grade–subject, and year. * p<0.10 ** p<0.05 *** p<0.01.
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Figure 1: Temperature and test scores
Notes: Scatter plot of test scores at the school-grade-subject-year level. Each dot

represents the average score for each temperature value (rounded by tenths of a degree).
The line shows the predicted values from a linear regression of test scores on temperature
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Figure 2: Effect of cumulative temperature on test scores
Notes: Coefficients and 95 percent confidence intervals from a regression of test scores on
the number of days during the year prior to the test that fall in each temperature range.

The model includes fixed-effects for the unit of observation (school-grade-subject) and year,
and as control variables it includes: temperature and precipitation on the test-day, and
total precipitation during the year prior to the test. Standard errors to construct the

confidence intervals are clustered by municipality.
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Figure 3: Difference in heat effects between schools with low vs high level of various inputs
per-capita
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Figure 4: Attenuation effect of heat on learning by mechanism
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Table A1: Effects of control variables on test scores

All sample Math Reading Urban Rural Public Private
(1) (2) (3) (4) (5) (6) (7)

(A) Cumulative Heat

Temperature on test day (C) -0.0082∗∗ -0.0084∗∗ -0.0079∗∗ -0.0144∗∗∗ 0.0031 -0.0009 -0.0245∗∗∗

(0.0034) (0.0039) (0.0031) (0.0048) (0.0032) (0.0029) (0.0093)
Cumulative precipitation 0.0011∗∗∗ 0.0017∗∗∗ 0.0006 0.0011∗∗ 0.0011∗∗∗ 0.0011∗∗∗ 0.0015∗

(0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0009)
Precipitation on test day -0.0000∗∗ -0.0000∗ -0.0000∗ -0.0000∗∗ -0.0000 -0.0000 -0.0000∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(B) Hot days

Temperature on test day (C) -0.0075∗∗ -0.0078∗∗ -0.0071∗∗ -0.0130∗∗∗ 0.0026 -0.0008 -0.0218∗∗∗

(0.0033) (0.0039) (0.0030) (0.0046) (0.0031) (0.0029) (0.0082)
Cumulative precipitation 0.0011∗∗∗ 0.0016∗∗∗ 0.0005 0.0010∗∗ 0.0011∗∗∗ 0.0011∗∗∗ 0.0013

(0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0008)
Precipitation on test day 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Municipios 5,514 5,512 5,512 4,173 5,108 5,507 1,735
N 300,109 149,864 150,245 183,226 112,783 201,451 98,658

Notes: The dependent variable is test scores standardized by school-grade-subject. Standard errors clustered by municipality
are in parenthesis. All models include fixed effects for school–grade–subject, and year. * p<0.10 ** p<0.05 *** p<0.01.
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Table A2: Robustness test of the effects of cumulative temperature on test scores

All sample Math Reading Urban Rural Public Private
(1) (2) (3) (4) (5) (6) (7)

(A) Cumulative Heat

Temperature (C) -0.1395∗∗∗ -0.1691∗∗∗ -0.1099∗∗∗ -0.1621∗∗∗ -0.0966∗∗∗ -0.1055∗∗∗ -0.2219∗∗∗

(0.0294) (0.0337) (0.0266) (0.0336) (0.0353) (0.0294) (0.0567)

(B) Hot days

Days below 17C 0.0020∗∗ 0.0026∗∗∗ 0.0014∗ 0.0020∗∗∗ 0.0027∗∗∗ 0.0023∗∗∗ 0.0022∗∗∗

(0.0008) (0.0009) (0.0008) (0.0008) (0.0007) (0.0009) (0.0007)
Days within 21-25C -0.0016∗∗∗ -0.0019∗∗∗ -0.0013∗∗∗ -0.0020∗∗∗ -0.0011∗∗∗ -0.0012∗∗∗ -0.0025∗∗∗

(0.0003) (0.0004) (0.0003) (0.0004) (0.0004) (0.0003) (0.0006)
Days within 25-29C -0.0028∗∗∗ -0.0034∗∗∗ -0.0022∗∗∗ -0.0030∗∗∗ -0.0026∗∗∗ -0.0027∗∗∗ -0.0033∗∗∗

(0.0006) (0.0007) (0.0005) (0.0007) (0.0007) (0.0006) (0.0009)
Days above 29C -0.0024∗∗∗ -0.0030∗∗∗ -0.0019∗∗∗ -0.0031∗∗∗ -0.0016∗∗ -0.0021∗∗∗ -0.0036∗∗∗

(0.0008) (0.0009) (0.0007) (0.0011) (0.0008) (0.0007) (0.0013)

Municipios
N 307,295 153,469 153,826 187,043 114,740 204,825 102,470

Notes: The dependent variable is test scores standardized by school-grade-subject. Standard errors corrected for spatial and
same-year temporal correlation, using a spatial threshold of 100 Km between municipalities’ centroids (Conley, 1999; Collela
et al. 2019) The omitted category in Panel B is Days within 17-21C. All regressions control for precipitation during one
year before the test, and day of the test maximum temperature and total precipitation. In addition, all models include fixed
effects for school-grade-subject, and year. * p<0.10 ** p<0.05 *** p<0.01.
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