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Non-linear Models Dynamic Probit Models Alternative Dynamic Probit Models

Maximum Likelihood Estimation Recap
Introduction

◮ ML method assumes knowledge of the entire distribution, not
just of a number of its moments as in GMM method

◮ If these distributional assumptions are correct, the ML
estimator, is under weak regularity conditions, consistent and
asymptotically normal.

◮ It is also asymptotically efficient since it fully exploits the
assumptions about the distribution.

◮ Starting assumptions of ML:
◮ The conditional distribution of an observed phenomenon is

known, except for a finite number of unknown parameters.
◮ These parameters will be estimated by taking those values for

them that give the observed values the highest probability, the
highest likelihood.

◮ It provides an approach of estimating a set of parameters
characterizing a distribution, if we know, or assume we know,
the form of this distribution
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Maximum Likelihood Estimation Recap
Introduction

Example -1

◮ Consider a large pool of balls filled with red and yellow balls

◮ One could be interested in the fraction p of red balls in this
pool

◮ Take random sample of N balls only

◮ Let yi = 1 if ball i is red and yi = 0 otherwise

◮ Thus, P{yi = 1} = p

◮ Suppose the pool of ball contains N1 = ∑
N
i=1 yi red and

N − N1 yellow balls
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example -1 Cont.

◮ The likelihood (probability) of obtaining such a sample is
given by:

P{N1 red balls, N−N1 yellow balls} = pN1(1− p)N−N1

(1)

◮ Equation 1 is what is called the Likelihood Function and it is
a function of the unknown parameter p.

◮ In ML estimation, we choose a value for p such that the
likelihood function is maximal, and obtain p̂.

◮ The conventional practice is to maximize the log-likelihood,
which is a simple monotonic transformation of equation [1]
(for computational convenience)

logL(p) = N1log(p) + (N − N1)log(1 − p) (2)
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example -1 Cont.

◮ FOC to maximize [1]:

dlogL(p)

dp
=

N1

p
− N − N1

1 − p
= 0 (3)

◮ Solving [3] for p gives the ML estimator p̂ = N1/N

◮ It corresponds to the sample proportion of red balls, and most
likely to your best guess for p based on the sample drawn

◮ SOC:
d2logL(p)

dp2
=

N1

p2
− N − N1

(1 − p)2
< 0 (4)

◮ Indicating that we indeed have a maximum

◮ Another example:
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example 2.

◮ Consider the simple regression model

yi = β1 + β2xi + εi (5)

◮ Keep assumptions [A1][A4]

◮ The assumptions imply that E{yi|xi} = β1 + βsxi &
V{yi|xi} = σ2

◮ To estimate the above model, we need to impose
distributional assumption on ε, the most common being
assumption [A5] (normal dist.)
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example 2.
◮ The contribution of the ith observation to the likelihood

function is the value of the density function at the observed
point yi. Which, for a normal distribution yields,

f (yi|xi; β, σ2) =
1√

2πσ2
exp{−1

2

(yi − β1 − β2xi)
2

σ2
} (6)

◮ Note: yi has a continues distribution, hence the likelihood of
observing a particular outcome y for yi is zero for any y

◮ Where β = (β1, β2)
◮ The joint density of (y1, ..., yN) conditional on

X = (x1, ..., xN)
′ is stated as

f (y1, ..., yN|X; β, σ2) =
N

∏
i=1

f (yi|xi; β, σ2) = (
1√

2πσ2
)N

N

∏
i=1

exp{−1

2

(y
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example 2. Cont.

◮ The likelihood function and the joint density function of
y1, ..., yN are similar except the fact that the former is
considered as a function of the unknown parameters β, σ2

◮ The LL function is given by

logL(β, σ2) = −N

2
log(2πσ2)− 1

2

N

∑
i=1

(yi − β1 − β2xi)
2

σ2
(8)

◮ Maximizing (8) w.r.t β1&β2 corresponds to minimizing the
residual sum of squares S(β), as shown in OLS. Do you see
why?
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example 2. Cont.

◮ Meaning that the ML estimators of β1&β2 are identical to the
OLS estimators!

◮ Denote these estimators by β̂1 and β̂2, and define the
residuals ei = yi − β̂1 − β̂2xi and maximize (8) w.r.t σ2. FOC:

−N

2

2π

2πσ2
+

1

2

N

∑
i=1

e2
i

σ4
= 0 (9)

◮ Solve(9) for σ2 to get the ML estimator for σ2 given by

σ̂2 =
1

N

N

∑
i=1

e2
i (10)
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Maximum Likelihood Estimation Recap
Introduction Cont.

Example 2. Cont.

◮ Note that however this estimator is consistent but not
unbiased (a small sample problem) as the estimator in OLS
which was given by

s2 =
1

N − K

N

∑
i=1

e2
i (11)

◮ In many cases, the ML estimator cannot be shown to be
unbiased (unknown small sample properties)

◮ Its use generally is defended based on asymptotic grounds

◮ Analytical solution of the ML estimator is also difficult in
many cases except in some general cases as shown above
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Maximum Likelihood Estimation Recap
Specification Tests

◮ Three types of tests

1. The Wald test: pretty much in line with t and F tests
2. The likelihood ratio test: used to compare two alternative

nested models
3. The lagrange multiplier test: used to test restrictions imposed

in estimation
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Cross-sectional Binary Choice Models
Recap

◮ Used to model phenomenal that are of discrete nature
◮ Do married women participate in the labor force?
◮ Which sections of society are poor?
◮ What are the determinants of an agricultural technology

adoption?

◮ For such kinds of models, OLS is generally inappropriate - we
rather use binary choice models

◮ Mostly (although not exclusively) the problems analyzed are
micro-economic nature
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Cross-sectional Binary Choice Models
Recap Cont.

◮ Suppose we want to study the impact of income (assumed as
the only variable here) on the probability of owning a car:

yi = β1 + β2xi2 + εi = x′i β + εi (12)

◮ Where, yi = 1 if family i owns a car, 0 if family i does not
own a car

◮ xi = (xi1, xi2)
′

◮ The standard assumptions:

E{εi|xi} = 0 such that E{yi|xi} = x′i β =⇒ (13)

E{yi|xi} = 1.P{yi = 1|xi}+ 0.P{yi = 0|xi} (14)

= 1.P{yi = 1|xi} = x′i β (15)
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Cross-sectional Binary Choice Models
Recap Cont.

◮ Thus, the linear model implies that x′i β is a probability and
should therefore lie between 0& 1.

◮ This is only possible if the xi values are bounded and if certain
restrictions on β are satisfied.

◮ Hard to achieve this in practice

◮ Another fundamental problem:
◮ εi in equation [1] has a highly non-normal distribution and

suffers from heteroscedasticity
◮ Because yi has only two possible outcomes, so does the error

term for a given value of xi

◮ The distribution of εi can be summarized as:

Yonas Alem (PhD) Panel Data Econometrics (PhD) Non-linear Static & Dynamic Mo



Non-linear Models Dynamic Probit Models Alternative Dynamic Probit Models

Cross-sectional Binary Choice Models
Recap Cont.

◮

P{εi = −x′i β|xi} = P{yi = 0|xi} = 1 − x′iβ (16)

P{εi = 1 − x′iβ|xi} = P{yi = 1|xi} = x′iβ (17)

◮ This implies that the variance of the error term is not
constant but dependent upon the explanatory variables

V{εi|xi} = x′i β(1 − x′iβ) (18)
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Cross-sectional Binary Choice Models
Recap Cont.

◮ We therefore use binary choice models (or univariate
dichotomous models)

◮ Describe the probability yi = 1 directly (but derived from an
underlying latent variable model (see next pages)

◮ The general formulation is:

P{yi = 1|xi} = G(xi, β) (19)

for some function G(.)
◮ Equation [8] says that the probability of having yi = 1

depends on xi

◮ But, clearly, G(.) should take on values in the interval [0, 1]
only

◮ Usually, we assume:

G(xi, β) = F(x′iβ) (20)
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Cross-sectional Binary Choice Models
Recap Cont.

◮ Common choices of F are the standard normal distribution

F(x′β) = Φ(x′β) =
∫ x′β

−∞
Φ(z)dz, (21)

giving rise to the so-called Probit Model, and the standard
logistic function given by:

L(x′β) =
ex′β

(1 + ex′β)
(22)

leading to the Logit Model
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Cross-sectional Binary Choice Models
Recap Cont.

◮ A third option is a uniform distribution over the interval [0,1]
with distribution function:

F(x′β) = 0, x′β < 0; (23)

F(x′β) = x′β, 0 ≤ x′β ≤ 1; (24)

F(x′β) = 1, x′β > 1. (25)

◮ Leading to what is called the Linear Probability Model

pretty similar with [12], except that the probabilities are set to
0 or 1 if x′iβ exceeds the lower upper limit respectively.
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Cross-sectional Binary Choice Models
Recap Cont.

◮ Probit and logit are more common on applied work.

◮ Both the standard normal and the standard logistic random
variable have an expectation of zero, while the latter has a
variance of π2/3 instead of 1.

◮ Correcting for the scaling difference would give similar results

◮ Apart from their signs, the coefficients in these binary choice
models are not easy to interpret directly

◮ One needs to compute the marginal effects of changes in the
explanatory variables
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Cross-sectional Binary Choice Models
Recap Cont.

◮ For a continuous explanatory variable, xik, say the marginal
effect is defined as the partial derivative of the probability that
yi equals one.

◮ For the three models above, we obtain

∂Φ(x′i β)
∂xik

= φ(x′iβ)βk; (26)

∂L(x′iβ)
∂xik

=
ex′i β

(1 + ex′i β)
βk (27)

∂(x′iβ)
∂xik

= βk; (or 0) (28)
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Cross-sectional Binary Choice Models
Recap Cont.

◮ MEs are typically computed for the ”average” observation,
replacing xi in the previous expressions with the sample
averages.

◮ For the logit model, re-write [19] as

log
pi

1 − pi
= x′i β, (29)

where pi = P{yi = 1|xi} is the probability of observing
outcome 1.

◮ The lhs expression is known as the ”log odds ratio”
◮ For example, an odds ratio of 3 mean that the odds of yi = 1

are 3 times those of yi = 0

◮ The β coefficients therefore can be interpreted as describing
the effect upon the odds ratio

◮ If βk = 0.1, a one-unit increase of xik increases the odds ratio
by about 10% (ceteris paribus)
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Cross-sectional Binary Choice Models
Recap Cont.

Estimation
◮ Very often binary choice modes are derived from underlying

behavioral model - following the latent model approach.

y∗ = x′iβ + ǫi (30)

◮ y∗ is referred to as the latent variable because it is unobserved
◮ Assume a probability model of working where a person

chooses to work if the utility difference exceeds a certain
threshold level

◮ Thus, one observes yi = 1 (working) if and only if y∗i > 0, and
yi = 0 (not working) otherwise.

◮ Hence,

P{yi = 1} = P{y∗i > 0} = P{x′i β+ ǫi > 0} = P{−ǫi ≤ x′iβ} = F(xi

(31)
Where F denotes the distribution function of −ǫi

◮ Thus, depending on the distributional assumptions of ǫi, one
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Cross-sectional Binary Choice Models
Recap Cont.

Estimation
◮ The likelihood contribution of observation i with yi = 1 is

given by P{yi = 1|xi} as a function of β. We do the same for
yi = 0

◮ We can write the likelihood function to be maximized for the
entire sample as

L(β) =
N

∏
i=1

P{yi = 1|xi; β}yi P{yi = 0|xi; β}1−yi (32)

and the corresponding loglikelihood function (which is
convenient to work with) will be given by

logL(β) =
N

∑
i=1

yilogF(x′i β) +
N

∑
i=1

(1 − yi)log(1 − F(x′iβ)). (33)
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Non-linear Panel Data Models
Panel Binary Choice Models

◮ A binary choice model is formulated in terms of an underlying
latent model

y∗it = x′itβ + αi + uit (34)

◮ Where:

yit =

{

1 if y∗it > 0;

0, otherwise.
(35)

◮ Assume uit has a symmetric distribution with distribution
function F(.), i.i.d across i&t and independent of all xis

◮ The presence of αi complicates estimation even when one
treats them as fixed unknown parameters, and as random
error terms.

◮ Treating as fixed unknown = including N dummy variables.
Hence:

logL(β, α1, ..., αN) = ∑
i,t

yitlogF(αi + x′itβ)+∑
i,t

(1− yit)log[1−F(αi +

(36)
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Non-linear Models
Panel Binary Choice Models Cont.

◮ Max w.r.t β & αi(i = 1, ..., N) will result in consistent
estimates only when T ∼ ∞

◮ For fixed T & N ∼ ∞, the estimators are inconsistent!

◮ Why? Due to what is called ”incidental parameter” problem
◮ For fixed T, the number of parameters grow with N
◮ αi can be estimated consistently only when T ∼ ∞ (i.e the

number of observations for individual i grows
◮ The inconsistency of α̂i for fixed T will carry over to the

estimator for β

◮ Why was the incidental parameter problem not an issue in the
linear FE model?
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Non-linear Models
Panel Binary Choice Models Cont.

◮ Alternative strategy: conditional maximum likelihood
estimator

◮ Considers the likelihood function conditional upon as set of
statistics ti that are sufficient for αi

◮ Conditional upon ti an individual’s likelihood contribution no
longer depends upon αi ut still depends upon the other
parameters β

◮ In the panel data binary choice model, the existence of a
sufficient statistics depends upon the functional form of F,
i.e., depends upon the distribution of uit

◮ Let the joint density or probability mass function of
yi1, ..., yiT = f (yi1, ..., yiT|αi, β)

◮ If a sufficient statistics ti exists ⇒
f (yi1, ..., yiT|ti, αi, β) = f (yi1, ..., yiT|ti, β)

◮ Maximize the conditional likelihood function based up on
f (yi1, ..., yiT|ti, β) to get a consistent estimator of β

Non-linear ModelsBinary Choice Models Cont.FE Logit
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Non-linear Models
Panel Binary Choice Models Cont.

◮ Takes ti = yi as a sufficient statistic for αi and applies CML

◮ Note: The conditional distribution of yi1, ..., yiT is degenerate
if ti = 0 or ti = 1

◮ Such individuals do not contribute to the CL and shoudl be
discarded in estimation

◮ Only individuals that change status at least once are relevant
for estimating β

◮ Consider the case where T = 2

◮ By conditioning upon ti = 1/2, we restrict the sample to the
observation for which yit changes. (0, 1)&(1, 0) will be the
two possible outcomes
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Non-linear Models
Panel Binary Choice Models - FE Logit

◮ The conditional probability of the first outcome is

P{(0, 1)|ti = 1/2, αi, β} =
P{(0, 1)|αi, β}

P{(0, 1)|αi, β}+ P{(1, 0)|αi, β}
(37)

Making use of

P{(0, 1)|αi, β} = P{yi1 = 0|αi, β}P{yi2 = 1|αi, β} (38)

and

P{yi2 = 1|αi, β} =
exp{αi + x′i2β}

1 + exp{αi + x′i2β} (39)

◮ Thus the conditional probability is given by

P{(0, 1)|ti = 1/2, αi, β} =
exp{(xi2 − xi1)

′β}
1 + exp{(xi2 − xi1)′β}

(40)

◮ And it does not depend on αi any more
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Non-linear Models
Panel Binary Choice Models FE Logit Cont.

◮ In a similar fashion:

P{(1, 0)|ti = 1/2, αi, β} =
1

1 + exp{(xi2 − xi1)′β}
(41)

◮ The conditional distribution of (yi1, yi2, given ti&αi is
independent of the individual specific effects

◮ Thus, for T = 2, estimation is possible using a standard logit
with xi2 − xi1 as explanatory variables and the change in yit

as the endogenous event (1 for positive change, 0 for a
negative one)

◮ Conditioning upon ti = 1/2 ⇒ first differencing (or within
transforming)as in the case of linear panel data models

◮ The principle is straightforward in the case of larger T.
◮ The CML approach is also extendable to the multinomial logit

model
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Non-linear Models
Panel Binary Choice Models - RE Probit

◮ Follow the latent variable specification

y∗it = x′itβ + εit (42)

◮ Where:

yit =

{

1 if y∗it > 0;

0, otherwise.
(43)

εit ∼ (0, 1) (44)

E{εit, xit} = 0 (45)
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Non-linear Models
Panel Binary Choice Models - RE Probit Cont.

◮ To estimate β by ML, one needs an assumption about the
joint distribution of (εi1, ..., εiT

◮ If we assume that the εit are independent, =⇒
f (yi1, ..., yiT, β) = Πtf (yit, β), which involves T
one-dimensional integrals only (as in the cross-sectional case)

◮ Assume:
ε = αi + uit (46)

E{uit, uis} = 0 (47)

◮ The joint probability will be:

f (yi1, ..., yiT|xi1, ..., xiT, β) =
∫ ∞

−∞
f (yi1, ..., yiT|xi1, ..., xiT, αi, β)f (αi)dαi

(48)
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Non-linear Models
Panel Binary Choice Models - RE Probit Cont.

◮ Requires numerical integration over one dimension =⇒
feasible to allow for correlation of the composite error term εit

(not the uit)

λ = Corr(εit, εis) =
σ2

α

σ2
α + σ2

u

(49)

◮ In principle, arbitrary assumptions can be made about
distributions of αi & uit, but in practice, not attractive!

◮ The most common assumption is the multivariate normal
distribution which gives rise to the Random Effects Probit

Model.

◮ Let’s see how it works:
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Non-linear Models
Panel Binary Choice Models - RE Probit Cont.

◮ Assumptions

εit ∼ N(0, 1) (50)

◮ As in the cross-sectional case, the error variance is normalized
to 1

cov{εit, εis} = σ2
α , s 6= t (51)

◮ =⇒

αi ∼ NID(0, σ2
α) (52)

uit ∼ NID(0, 1 − σ2
α) (53)
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Non-linear Models
Panel Binary Choice Models - RE Probit Cont.

◮ The Likelihood function is given by:

f (yit|xit, αi, β) = Φ(
x′itβ + αi
√

1 − σ2
α

) if yit = 1 (54)

= 1 − Φ(
x′itβ + αi
√

1 − σ2
α

) if yit = 0 (55)

◮ Where Φ denotes the CDF of the standard normal distribution
◮ The density of αi is given by

f (αi) =
1

√

2πσ2
α

exp{−1

2

αi2

σ2
α

} (56)

◮ The integral in equation [48] can be computed numerically
using the Gauss-Hermite quadrature (Butler & Moffitt, 1982)

◮ The RE Probit is estimable in a standard software such as
Stata

◮ NB: the pooled probit estimator (which ignores the correlationYonas Alem (PhD) Panel Data Econometrics (PhD) Non-linear Static & Dynamic Mo
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Non-linear Models
Panel Binary Choice Models - RE Tobit.

◮ The RE Tobit is pretty similar to the RE Probit

y∗it = x′itβ + αi + uit (57)

◮ Where:

yit =

{

y∗it if y∗it > 0;

0, otherwise.
(58)

◮ The standard RE assumptions

αi ∼ N(0, σα) (59)

uit ∼ N(0, σu) (60)
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Non-linear Models
Panel Binary Choice Models - RE Tobit Cont.

◮

E{xit, αi} = 0 (61)

E{xit, uit} = 0 (62)

◮ The likelihood function is given as:

f (yi1, ..., yiT|xi1, ..., xit, β) =
∫

−
∞∞ ∏

t

f (yit|xit, αi, β)f (αi)dαi,

(63)

f (αi) =
1

√

2πσ2
α

exp{−1

2

αi2

σ2
α

} (64)
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Non-linear Models
Panel Binary Choice Models - RE Tobit Cont.

◮ &

(65)

◮ NOte: the later two expressions are similar to the likelihood
contributions in the cross-sectional case (the only difference is
the inclusion of αi in the conditional mean.
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Dynamic Probit Models & The Initial Conditions Problem
Example - Poverty Persistence

◮ A poverty probability model is estimated using a dynamic
probit model due to state dependence in poverty

◮ State dependence in poverty: An individual (a household)
experiencing a poverty spell today is much more likely to
experience it again in the future

◮ Five possible reasons for true state dependence in poverty

1. Unwillingness to take-up a new job or continue working when
wage is too low

2. Deterioration of human capital during a spell of unemployment
3. Social exclusion due to poverty - addiction to drug and alcohol
4. Accepting social welfare support as a way of living
5. Inability to engage in marriage or cohabitation - reduce the

opportunity of economies of scale
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Dynamic Probit Models & The Initial Conditions Problem
Example - Poverty Persistence Contd...

◮ Let the probability of being poor be specified as

p∗it = γpit−1 + x′itβ + αi + uit (66)

◮ (i = 1, ..., N; t = 2, ..., T),

◮ where p∗it is a latent dependent variable;

◮ xit is a vector of exogenous explanatory variables,

◮ αi are (unobserved) individual-specific random effects, and

◮ uit ∼ N(0, σ2
u)

◮ It is assumed that N is large but T is small, which implies that
asymptotics depend on N alone.
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Dynamic Probit Models & The Initial Conditions Problem
Example - Poverty Persistence Contd...

◮ pit is the observed binary outcome variable defined as

◮ Even when uit is serially independent, the composite error
term υit = αi + uit will be correlated overtime because of αi

◮ The RE specification adopted implies equicorrelation between
the υit in any two periods:

ρ = Corr(υit, υis) =
σ2

α

σ2
α + σ2

u

t, s = 2, ..., T; t 6= s. (67)
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The Initial Conditions Problem
Example - Poverty Persistence Contd...

◮ The standard RE model also assumes αi uncorrelated with xit,
but correlation can be allowed following Mundlak (1978) &
Chamberlain (1984).

◮ Correlation between αi and the observed characteristics can be
allowed by assuming a relationship between αi and either the
time means of the x variables or a combination of their lags
and leads.

◮ E.g αi = x′ia + ζi where ζi ∼ IID(0, σ2
ζ ) independent of xit and

uit for all i, t.

◮ p is a binary variable −→ we require normalization

◮ A convenient one is that σ2
u = 1
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The Initial Conditions Problem
Example - Poverty Persistence Contd...

◮ Under the assumption of normality, the transition probability
for individual i at time t given αi, is then given by

P[pit|xit, pit−1, αi] = Φ[(γpit−1 + x′itβ + αi)(2pit − 1)], (68)

◮ Φ is the cumulative distribution function of the standard
normal
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The Initial Conditions Problem
Example - Poverty Persistence Contd...

RE Probit

◮ Estimation of the model requires an assumption about the
initial observations, pi1 and its relationship with αi.

◮ One option: assume pi1 to be exogenous =⇒ pit−1 can be
incorporated in xit and estimated using the standard RE probit
model.

◮ The assumption that pit−1 is exogenous is however a strong
assumption because of what is called the initial conditions

problem

◮ The start of the observation period does not coincide with the
start of the stochastic process generating households’ poverty
persistence
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The Initial Conditions Problem
Example - Poverty Persistence Contd...

RE Probit

◮ Consequently, estimation of (1) by RE will tend to overstate
the degree of state dependence, γ

◮ Thus, α should be integrated out

◮ Three available methods

◮ Heckman’s Estimator

◮ Orme Two-Stage Estimator

◮ Wooldridge’s Conditional Maximum Likelihood Estimator
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Dynamic Probit Models
Heckman’s Estimator

◮ Heckman’s (1981) approach starts by specifying a linearized
reduced-form equation for the initial value of the latent
variable:

p∗i1 = z′i1π + ηi (69)

◮ Where zi1 is a vector of exogenous instruments (for example
pre-sample variables) and includes xi1, and ηi is correlated
with αi, but uncorrelated with uit for t ≥ 2.

ηi = θαi + ui1 (70)

where θ > 0, and αi & ui1 are independent of one another.
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Dynamic Probit Models
Heckman’s Estimator

◮ We also assume that ui1 satisfies the same distributional
assumptions as uit for t = 2, ..., T.

◮ One can therefore write the linearized reduced form for the
latent variable for the initial period as

p∗i1 = z′i1π + θαi + ui1 (71)

◮ The joint probability of the observed binary sequence for
individual i given αi, is thus:

Φ[(z′i1π + θαi)(2pi1 − 1)]
T

∏
t=2

Φ[(γpit−1 + x′itβ + αi)(2pit − 1)]

(72)
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Dynamic Probit Models
Heckman’s Estimator

◮ For a random sample of households, the likelihood to be
maximized is given by

∏i

∫

{Φ[(z′iπ + θσαα∗)(2pit − 1)]

×
T

∏
t=2

Φ[(γpit−1 + x′itβ + σαα∗)(2pit − 1)]}dF(α∗),(73)

◮ Where F is the distribution function of α∗ = α/σα

◮ Under the normalization used,

σα =
√

ρ/1 − ρ (74)

◮ with α assumed to be normally distributed, the integral over
α∗ can be evaluated using Gaussian-Hermite quadrature
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Dynamic Probit Models
Orme’s Two-Step Estimator

◮ Another approach to address the initial conditions problem
suggested by Orme (1997, 2001)

◮ Write the initial period latent equation as:

p∗i1 = z′iλ
∗ + υi1. (75)

◮ The cause of the initial conditions problem is the correlation
between the regressor pit−1 and the unobservable αi,

◮ Thus, Orme uses an approximation to substitute αi with
another unobservable component that is uncorrelated with the
initial observation

◮ Assume (υi1, αi) ∼ BVN(0, 0, σ2
υ , σ2

α , r)

αi|υi1 ∼ N[r
σα

συ
, σ2

α(1 − r2)] (76)
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◮ One can rewrite:

αi = r
σα

συ
υi1 + σα

√

(1 − r2)wi (77)

◮ Where wi is orthogonal to υi1 by construction and distributed
as N(0, 1).

◮ Substituting (16) for αi in equation (1) yields,

p∗it = γpit−1 + x′itβ + [r
σα

συ
υi1 + σα

√

(1 − r2)wi] + uit (78)

◮ Equation (17) has two time invariant unobserved components,
υi1 and wi.

◮ Since E(wi|pi1) = 0, allowing for the correlation of υi1, and
pi1 addresses the initial conditions problem.
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◮ Orme shows that Eq(17) and the assumption of BVN imply
that,

ei ≡ E(υi1|pi1 = (2pi1 − 1)συφ(λ∗′zi/συ)/Φ((2pi1 − 1)λ∗′zi/συ),
(79)

◮ Where φ and Φ are the Normal density and distribution
functions, respectively.

◮ This is the generalized error from a first period probit
equation, analogous to that used in Heckman’s sample
selection model estimator.

◮ Thus, one can estimate Eq(17) as a random-effects probit
model with an estimate of ei (obtained after the estimation of
(17) using a simple probit for the initial period) used in place
of υi1.
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Wooldridge’s Conditional Maximum Likelihood (CML) Estimator

◮ Proposes an alternative CML estimator that considers the
distribution of p2, p3, ..., pT conditional on the initial period
value p1 (and exogenous variables)

◮ Let the joint density for the observed sequence of the
dependent variable (p2, p3, ..., pT|p1) be written as
(pT, pT−1, ..., p2|p1, x, α).

◮ To integrate out αi, specify an approximation for its density
conditional on pi1

◮ In the case of RE probit, the following specification is assumed

αi|pi1, zi ∼ N(ζ0 + ζ1pi1 + z′iζ, σ2
a ) (80)

where
αi = ζ0 + ζ1pi1 + z′iζ + ai (81)
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◮ in which zi includes variables that are correlated with αi.

◮ z here differs from that in the Heckman specification

◮ The trick here is that the correlation between pi1 and α is
handled by the use of Eq(20) which gives rise to ai - a new
unobservable individual-specific heterogeneity term
uncorrelated with pi1

◮ Substituting Eq(17) into Eq(1) gives

Pr(pit = 1|ai, pi1) = Φ[(x′it β+γpit−1 + ζ1pi1 + z′iζ + ai] t = 2, ...,

(82)
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◮ Consequently, the likelihood function for household i is given
by

Li =
∫

{
T

∏
t=2

Φ[(x′itβ+γpit−1 + ζ1pi1 + z′iζ + a)(2pit − 1)]}g∗(a)da,

(83)
where g∗(a) is the normal probability density function of the
new unobservable term ai.
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End of Lecture!

◮ Thank You!
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