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Truth behind Chinese Superstition: Non-linear Effects of Vehicle 
Traffic on Urban Air Quality in Beijing 

Shuai Chen, Jun Yang, Ping Qin, and Jintao Xu 

Abstract 
Employing hourly data records from 2013 and 2014 in Beijing, we investigate the causal effects 

of vehicle traffic on air pollution. An arguably exogenous variation in vehicle use that results from the 
staggered and rotating driving restriction program there, combined with a widespread Chinese 
superstition about the unlucky number four, allows us to better track causal effects of traffic-induced air 
pollutants in a generalized 2SLS framework. We find that: (1) Traffic has contributed 47.6% of the 
deterioration in air quality in Beijing; for the specific pollutants PM2.5, PM10, NO2, and CO, 37.2%, 
50.0%, 42.3%, and 55.7%, respectively, are estimated to be caused by vehicle traffic. (2) The average 
marginal effects of traffic on air pollution at night are 2.5 times what they are in daytime. (3) There is a 
non-linear, U-shaped relationship between the Chinese Traffic Congestion Index (TCI) and 
concentration of air pollutants, with the inflection point occurring when TCI falls in the range of 5 to 
5.5, indicating that damage caused by air pollution escalates disproportionately as traffic jams intensify 
and increase in frequency. We conclude that urban air pollution abatement strategies could be more 
effectively targeted if policy makers considered the dynamics documented here of the relationship 
between traffic congestion and air pollution, as these vary over time and congestion level. 
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Truth behind Chinese Superstition: Non-linear Effects of Vehicle 
Traffic on Urban Air Quality in Beijing 

Shuai Chen, Jun Yang, Ping Qin, and Jintao Xu∗ 

1. Introduction

Traffic congestion and air pollution are two of the most pressing problems facing 
developing metropolises. Both are negative externalities arising from the urban economy that in 
turn induce further negative externalities to human health as well as to the broader set of 
economic activities that cause them.1 Transport authorities often assume that alleviating traffic 
congestion will reduce urban air pollutant levels (Chin 1996). Traffic demand control policies, 
either through pricing or direct regulation (Mahendra 2008), have therefore become the most 
widely adopted practices to restrain vehicle use. However, there is currently little empirical basis 
for accepting or rejecting such practices, especially when a full policy assessment extends 
beyond traffic congestion alleviation to air pollution mitigation and other economic effects.2 

∗Shuai Chen, Guanghua School of Management and IEPR, Peking University, Beijing 100871, China. Email: 
shuaichenyz@gmail.com. Jun Yang, Beijing Transportation Research Center, Beijing 100073, China. Email: 
yangjun218@sina.com. Ping Qin, corresponding author, School of Economics, Renmin University of China, Beijing 
100872, China. Email: pingqin@ruc.edu.cn. Jintao Xu, National School of Development, Peking University, Beijing 
100871, China. Email: xujt@pku.edu.cn. Seniority of authorship is shared. All correspondence should be addressed 
to Ping Qin. Financial support from National Science Foundation of China (71403279) and the EfD Initiative of the 
University of Gothenburg through Sida is gratefully acknowledged. 
1Studies on the externalities of urban development include, for instance, Rothenberg (1970), Nechyba and Walsh 
(2004), and Arnott (2007). Traffic congestion causes time and commute costs (see Arnott et al. 1993; Arnott and 
Kraus 1998) and deterioration in social welfare (see Arnott and Small 1994; Parry and Bento 2002) and reduces 
labor supply (see Gutiérrez-i-Puigarnau and van Ommeren 2010; Viard and Fu 2015). Beyond these economic costs, 
air pollution has also been linked to infant health problems (see Chay and Greenstone 2003, 2005; Currie and 
Neidell 2005), morbidity (Ostro 1983, 1987) and mortality (Chen et al. 2013a). 
2Empirical evidence of the impact of vehicle restrictions on air pollution and economic activities has begun to 
accumulate. Representative work includes Eskeland and Feyzioglu 1995, Davis 2008, Salas 2010, Lin et al. 2011, 
Sun et al. 2014, Viard and Fu 2015, Chen et al. 2013b, Liang et al. 2015, Gallego et al. 2013, and Cao et al. 2014. 
However, the conclusions are mixed, even for the same cities, including Mexico City (Davis 2008; Salas 2010) and 
Beijing (Sun et al. 2014; Viard and Fu 2015). Gallego et al. (2013) conclude that such policies may appear effective 
in the short run, but, in the long run, effectiveness can be reduced after households have adjusted their stock of 
vehicles. Xu et al. (2015) point out differences in findings regarding whether vehicle restrictions have a long-term 
effect on road congestion and air pollution. As Viard and Fu (2015) point out, such restrictions may be ineffective 
due to either non-compliance or compensating responses such as inter-temporal driving substitution. At the same 
time, if effective, they may reduce economic activity by increasing commute costs and reducing workers’ 
willingness to supply labor for any given level of compensation. 
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More clearly understanding both the dynamics contributing to traffic-induced air pollution and 
the potential policy interventions could help better design urban transport and environmental 
policies. 

In this paper, we study the causal effects of vehicle traffic on urban air pollution. 
Establishing causality is a critical first step before more elaborate empirical strategies can be 
developed to examine how air pollutant concentration will ultimately shift in response to varying 
traffic conditions. To conduct our research, we used hourly data records of air pollutants, 
Beijing’s traffic congestion index (TCI) and meteorological reports from 2013 and 2014 in 
Beijing. Beijing can be regarded as an ideal place for this research because traffic is becoming an 
increasingly dominant source of air pollution in the city. As one of the world’s largest 
developing megacities, Beijing has already had almost all of its polluting industrial plants 
relocated to other regions (Zhao and Yin 2011; Sun et al. 2004). In addition, the main fuel source 
for winter heating has gradually become natural gas, regarded as a much cleaner energy source 
than coal (Liang et al. 2015). 

Despite the rich data availability and the clear importance of traffic-induced air pollution 
in Beijing, we remain mindful of the potential for reverse causality (Neidell 2009; Wang et al. 
2014) that could bias our estimates. For example, people might change travel behavior in 
response to air pollution levels, in turn changing the traffic congestion level. We hope to 
minimize this issue by using the exogenous variation in daily vehicles that arises due to the 
widespread Chinese superstition about the number four in connection with Beijing’s staggered 
and rotated one-day-per-week driving restriction. 

On October 11, 2009, the one-day-per-week driving restriction policy was introduced in 
Beijing and has been in effect continually ever since.3 This measure, enforced from 7 a.m. to 8 
p.m., grouped the last digits of license plates into five pairs: one and six, two and seven, three 
and eight, four and nine, and five and ten. Each pair is assigned to a weekday (from Monday to 
Friday) on which driving is restricted. The assignment of these pairs to weekdays is rotated every 
13 weeks.4 

                                                 
3We describe the policy background in detail in Section 2.2. 
4For example, a car with a plate ending with number four might be prohibited from driving on Monday in May but 
on Tuesday in June. Before 2009, the rotation period was one month. 
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Vehicle owners can choose a license plate number from a list of randomly generated 
numbers. Most Chinese people avoid the unlucky number “4,” because its pronunciation sounds 
like “death” in Chinese. This cultural preference induces most Chinese people to avoid the 
number four as the last digit of their plate number, suggesting more vehicles will be on the road 
in Beijing on the day when the tail number combination four and nine is restricted from driving 
(hereafter “four and nine” days). Therefore, the four and nine days act as a quasi-natural 
experiment that exerts an unintentional shock on local traffic. 

The exogenous variation of local traffic introduced by the four and nine days in Beijing 
allows us to identify the causal effects of traffic-induced air pollutants by the typical instrument 
variable (IV) estimation. We are trying to examine the specific impact of urban air quality solely 
through the channel of vehicle traffic, and the “four and nine” day comparison works particularly 
well for this purpose; it works better than a comparison between holidays and weekdays because, 
on holidays, air quality is affected through multiple channels, including production schedule 
changes and increased tourism. 

Other advantages of the “four and nine” day comparison include: 

1) The fact that the particular numbers restricted on a certain weekday are changed every 
13 weeks tends to rule out certain adaptation behaviors, i.e., that some people might intentionally 
avoid being prohibited from driving on a certain weekday by choosing their last license plate 
digit accordingly.5 

2) The system meanwhile also ensures that the four and nine days are evenly distributed 
across weekdays and seasons, which rules out other potentially seasonal impact channels. 

3) As part of Chinese culture, the number four is avoided across most routine aspects of 
life, including telephone numbers, membership cards, and office floors. Because of the 
pervasiveness of this preference, the choice of license plate number is unlikely to correlate with 
other confounding factors that affect both local traffic and air quality. 

                                                 
5 Gallego et al. (2013) point out that households can adjust their stock of vehicles in response to the driving 
restriction policy, which can weaken policy effects in the long run. However, during our 2013-2014 study period, 
the driving restriction policy in Beijing was accompanied by a lottery policy that controlled the growth of vehicle 
ownership through a lottery system that randomly allocated the issuance of license plates (regardless of plate 
number) and, thus, restricted the number of vehicles that could be registered. 
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We apply a generalized 2SLS framework to test, in the first stage, whether traffic 
conditions are affected by the exogenous shock of the four and nine days, and then, in the second 
stage, whether such traffic changes result in corresponding changes in air pollutant levels. Our 
estimates indicate that traffic has contributed to 47.6% of the deteriorating air quality (measured 
by the Chinese Air Quality Index) in Beijing. For specific pollutants, vehicle traffic is estimated 
to account for 37.2% of PM2.5, 50.0% of PM10, 42.3% of NO2 and 55.7% of CO. We then extend 
our research to examine the hourly relationship between traffic congestion and air pollution and 
how air pollutants ultimately shift in response to varying traffic levels. We find that the average 
marginal effects of traffic on air pollution at night are 2.5 times what they are in the daytime and 
that there is a non-linear, U-shaped relationship between the traffic congestion index (TCI) and 
air pollutant levels, with the inflection point occurring when TCI measures between 5 and 5.5, 
indicating damage worsens disproportionately as traffic jams proliferate. 

The main advantage of using IV is that it makes explicit the source of traffic variation 
used to evaluate traffic-induced air pollution. However, a common drawback is that IV 
estimation is based only on the “compliers” affected by the instrument (Imbens and Angrist 
1994). Specifically, IV estimates the effect on air pollution of the subset of extra vehicles that are 
on the road on four and nine days. If the traffic-induced effect on air pollution is not constant 
across vehicles with different license plate tail numbers, then we can only interpret the IV 
estimation as a local effect induced by the four and nine days. The core issue is whether the local 
effect of the IV estimator is close to the real marginal effect. By comparing simulation results of 
different traffic policy interventions with representative studies, we show that our IV estimator 
has superior performance in policy evaluations. In fact, the four and nine days induce a 
widespread shock on vehicles across all tail numbers due to either non-compliance or 
compensating responses such as inter-temporal driving substitution (Viard and Fu 2015). We 
find significant variations in traffic between the four and nine days and other weekdays, even 
during the non-restricted hours of the day (i.e., before 7 a.m. and after 8 p.m.) when vehicles 
with any tail numbers are allowed. In the most conservative explanation, the four and nine days 
increase TCI by 0.54-0.55, which exacerbates air pollution in turn by 10.53%-10.73%, according 
to our two-stage estimation. 

Many studies, spanning several disciplines and employing various methods, have 
examined the relationship of traffic to air pollution. Studies from the natural sciences, such as 
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atmospheric environmental studies, are the main tool used to evaluate potential effects from 
urban vehicle emissions.6 Instead of using a regression framework, atmospheric environmental 
studies use, for example, rich theoretical models to simulate air pollutants, based on the chemical 
composition of vehicle emissions.7 By doing so, these studies track air pollutant sources and 
analyze them chemically, emphasizing the dynamic formation process of primary and secondary 
pollutants. Although scientific studies tend to show that transportation acts as a major contributor 
to air pollution (Huan and Kebin 2012),8 debate continues, mostly centering on what exactly is 
the net magnitude of traffic-induced air pollution in urban areas and how precisely traffic 
damages air quality (for example, Guo et al. 2014 and Li et al. 2015).9 

The influence of traffic on air pollution has been widely studied across the social 
sciences. However, the evidence is often inconclusive regarding the causal effects of traffic on 
air pollution. Following an influential study by Davis (2008) on the impact of a driving 
restriction program in Mexico, empirical evidence based on rigorous methods began to 
accumulate. By using both OLS and Regression Discontinuity Design (RDD), Lin et al (2011) 
tested whether driving restriction policies have mitigated air pollution in multiple Chinese cities, 
including Beijing. Specifically, for the one-day-per-week driving restriction after the 2008 
Olympics, they found no evidence of air pollution mitigation. This conclusion was also 
supported by Cao et al (2014). By contrast, using the same empirical strategy, while emphasizing 
spatial variation in air quality changes, Viard and Fu (2015) found significant pollution reduction 

                                                 
6Examples ofatmospheric environmental studies include Sun et al. (2004), Wanget al. (2009a), Wang and Xie 
(2009), Molina et al. (2010), Cai and Xie (2011), Zhang et al. (2013), Guo et al. (2014), Levy et al. (2014) and Li et 
al. (2015). 
7For example, the Operational Street Pollution Model (OSPM) is in essence a parameterized semi-empirical model, 
which makes a priori assumptions about the flow and dispersion conditions of air pollution. For a detailed 
discussion, please refer to Wang and Xie (2009). 
8Many scientific studies have confirmed that local vehicle emissions are major contributors to air pollutants, 
including carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and volatile organic compounds 
(VOC); see, for example, Wang and Xie (2009) and Guo et al. (2014). However, a few studies produced different 
results. For instance, Zhang et al. (2013) collected monthly data from urban sites in Beijing and found traffic 
emissions played only a minor role in deteriorating air quality. 
9We are not aware of any atmospheric study that has tested a simulation model using data different from what was 
used to calibrate it. Potential weaknesses of simulation models are their complexity, with the large number of 
parameters (Berkowicz et al. 1996), uncertainty about changing weather conditions (Elminir 2005), few research 
samples collected (Wang et al. 2009b), and data spanning only a very short period (Chen and Ye 2015). In addition, 
simulation approaches take vehicle emissions as exogenous: they do not account for adaptive responses by city 
dwellers and other economic actors. 
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due to Beijing’s driving restrictions, in particular, that air pollution fell 8% under the one-day-
per-week driving restriction.10 In other efforts, Chen et al. (2013b) examined policy effects on air 
pollution mitigation by comparing Beijing with other non-Olympic cities before, during and after 
the Olympics in a Difference-in-Difference (DID) specification, and Liang et al. (2015) 
examined the effects on Beijing air quality of various government-driven interventions, such as 
steps taken in relation to the Asia-Pacific Economic Cooperation (APEC) conference and other 
efforts focused on winter heating. Even though significant air pollution mitigation was found in 
both studies, policy evaluations on air quality impacts suffer from a common weakness: they 
evaluate a battery of actions simultaneously, and therefore impact analysis cannot disentangle the 
effects of traffic control from other policy interventions such as plant closures. 

Ours is not the first study to use the four and nine days as an exogenous shock. Prior 
studies include Sun et al. (2014), Zhong (2015) and Yang et al. (2016). We add to the existing 
literature in three respects. First, we take more care to establish the causal relationship between 
traffic and air pollutants. Existing literature either does not recognize that traffic and air pollution 
may be simultaneously determined or fails to solve this identification problem. The work of Sun 
et al. (2014) and Zhong (2015) used reduced form strategies, which directly examined the 
impacts of the four and nine days on urban air pollutants and human health (measured by 
ambulance calls). We make a substantial improvement by emphasizing that our IV meets the 
exclusion restriction (Imbens and Angrist 1994), i.e., traffic is the only impact channel that links 
the four and nine days with air pollution. 

Second, our data set is richer and more comprehensive than that used in previous studies. 
Existing literature that has examined the link between traffic and air pollution primarily focuses 
on Beijing and the data used in these studies are mostly daily records of traffic and air pollution 
information (for example, Sun et al. 2014 and Yang et al. 2016). By contrast, we have collected 
richer information on hourly air quality, traffic and meteorological conditions for Beijing during 
2013-2014, which allows us to better control for unobserved temporal factors as well as to 
explore the difference in hourly impacts of traffic on air pollutants. 

                                                 
10An important issue with Regression Discontinuity Design (RDD) in practice is bandwidth selection (Imbens and 
Lemieux 2008). For example, although Davis (2008) finds no evidence that a driving restriction policy improved air 
quality in Mexico, Salas (2010) argues that Davis’ (2008) results using the RDD are sensitive to assumptions about 
time window and time trend. 
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Third, it is extremely difficult to detect non-linear relationships between endogenous 
traffic congestion and air pollutants.11 We address this problem by separately looping our 2SLS 
framework across small sub-samples divided by fixed TCI intervals. Specifically, we use 0.5 as 
an interval to divide TCI and estimate average marginal contributions to air pollutants so TCI 
intervals are gradually incremented by the 0.5 level. In this way, we plausibly detect the non-
linear relationship between TCI and air pollution, given that valid IVs are limited. 

In addition to identifying causal effects and exploring the non-linear relationship of 
hourly variations in traffic to air pollution in Beijing, we believe our research makes three 
important contributions. First, our study can be linked to, and adds to, a broader literature on 
environmental policies. Impact evaluations of improved health and economic consequences 
linked to air pollution reduction in relation to traffic require a rigorous analysis of the 
relationship between traffic conditions and air quality. Our study can provide a strong empirical 
basis for such broader environmental and economic research. Second, studies from the natural 
sciences that evaluated the contributions of vehicle traffic to air quality in Beijing have not yet 
reached a consistent conclusion. The debate among academics and policy makers still goes on 
regarding how much air pollution can be attributed to Beijing’s vehicle traffic. Our research and 
findings, using econometric methods, can make a significant contribution to this interdisciplinary 
literature. Third, deeper insight into traffic-induced air pollution can provide crucial assistance in 
making optimal policy recommendations. The non-linear effects of traffic congestion on air 
quality that are detected in our research clearly demonstrate that efforts to keep the congestion 
index from rising above the “inflection point” will have disproportionate effects on alleviating 
pollution in Beijing. 

This paper proceeds as follows. In Section 2, we provide an overview of the Beijing 
driving restriction policy and air pollution situation, and we describe the number preferences of 
Chinese culture. In Section 3, we describe our hourly records of air pollutants, traffic congestion 
and weather conditions in Beijing, which are our primary data sources. We also discuss empirical 
challenges. In Section 4, we present our empirical models and discuss identifying assumptions. 
In Section 5, we present our main results, including a discussion of statistical inferences in a 
setting in which the non-linear traffic-related air pollutants and discrepancies in impacts over 
time are tested. In Section 6, we provide a variety of robustness checks, including discussion of 

11We discuss this empirical challenge in detail in Section 5.5. 
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potential data manipulation, alternative traffic measurements and the main drawback of IVs. 
Finally, in Section 7, we discuss policy implications and conclude. 

2.  Background 

2.1 Vehicle Growth, Congestion and Air Pollution in Beijing 

In recent years, Beijing has experienced explosive vehicle growth due to both rapid urban 
in-migration and income growth. Beijing took seven years to increase its car “population” from 
one million to two million but only four more years to reach three million, and three more to 
reach four million. In 2005, Beijing had 2.6 million cars. By 2013, it had 5.4 million vehicles, 
with an annual growth rate of 9.8%, while the volume of private cars alone reached 4 million 
(Figure 1 (a)). This dramatic increase in vehicle ownership has naturally led to a significant 
increase in the share of trips made by private vehicles. The share of all trips made by cars has 
increased from 5% in 1986 to over 30% in 2014, while the share of bicycle trips has decreased 
profoundly, from 62.7% in 1986 to 11.3% in 2014 (Figure 1 (b)). Because of the rapid growth of 
car ownership and resulting greater car use, traffic congestion has become an increasing 
problem. The Beijing Transportation Annual Report (2001-2013)12 stated that average speed of 
vehicles on arterial roads during morning rush hour decreased from 60 km/h in 2001 to 23 km/h 
in 2013, with even larger drops in vehicle speeds on secondary roads. 

Along with vehicle growth and congestion, a severe related environmental problem in 
Beijing is air pollution. From 2000 to 2014, the average Air Quality Index (AQI)13 in Beijing 
was 96.8, where 0 is excellent air quality and over 300 is severe pollution. This means that, on 
average, the air was rated as “polluted” for nearly 50% of the days of the average year in that 14-
year period (Figure 2). Air quality is different during winter heating periods compared with other 
periods when artificial heating is not widely used: in winter heating periods, the average AQI 
reached 102.5, about 10% higher than the pollution index in non-heating periods.14 In 2013, a 
new standard measurement of air quality incorporating the particularly harmful pollutant known 

                                                 
12The Beijing Transportation Annual Report (2001-2013).See 
http://www.bjtrc.org.cn/JGJS.aspx?id=5.2&Menu=GZCG. 
13Before 2013, air quality was measured by the Air Pollution Index (API) instead of AQI (see the notes for Figure 2 
for details). 
14In Beijing, the legal heating period lasts from Dec.15 to Mar.15 of the next year; see 
http://www.tianqi.com/news/108879.html. 

http://www.bjtrc.org.cn/JGJS.aspx?id=5.2&Menu=GZCG
http://www.tianqi.com/news/108879.html
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as PM2.5was introduced. According to this air quality measurement, in 2013, the number of days 
when air quality in Beijing met an acceptable standard (AQI<100) accounted for only 48% of the 
year, with the days when the air was “seriously” or “severely” polluted accounting for 16%. The 
average annual PM2.5 concentration was 89.5 μg/m,15 2.5 times China’s Ambient Air Quality 
Standard and about nine times the World Health Organization (WHO) standard. 

Beijing’s growing fleet of cars emits massive amounts of carbon monoxide (CO), nitrous 
oxide (NOx), and volatile organic compounds (VOCs); these, along with Particulate Matter 
(PM)16, all contribute importantly to Beijing’s painfully poor air quality. According to the 
Beijing Municipal Environmental Protection Bureau (2014),17 vehicle emissions accounted for 
nearly 31% of local air pollution. Further analysis suggests that vehicle emissions contribute 6%-
22% of suspended particulates, 46% of hydrocarbons, 74% of NOx, and 23% of PM10 (Hao et al. 
2005). 

2.2 Beijing’s Driving Restriction Program 

To combat traffic congestion and air pollution, Beijing’s city government has 
implemented multiple policies in recent years, including regulatory measures such as its vehicle 
registration and driving restriction programs, as well as price-based measures (Qin et al. 2013).18 
Aside from a four-day trial in August 2007, the first application of driving restrictions in Beijing 
was in July and August 2008, before and during the Summer Olympics. Vehicles were restricted 
from driving every other day. Vehicles with odd-ending plate numbers were prohibited from 
driving on odd-numbered days and those ending with even plate numbers were prohibited from 
driving on even-numbered days. Restrictions were enforced virtually “around the clock” from 6 

                                                 
15Source: Air Quality Conditions of Key Regions and 74 Cities in 2013, released by Ministry of Environmental 
Protection in 2014;http://www.mep.gov.cn/gkml/hbb/qt/201403/t20140325_269648.htm. 
16Particulate matter (PM10 and PM2.5, i.e.,airborne particles smaller than 10 or 2.5 microns) is also known as 
suspended particulate. PM2.5 is especially dangerous to health. 
17See Beijing Environmental Statement (2014), http://www.bjepb.gov.cn/bjepb/341240/index.html. 
18Beijing was the first city in China to implement a driving restriction program, although this kind of policy is not 
new worldwide (Mahendra 2008).Early in the 1970s, Buenos Aires, Argentina, adopted a similar program, banning 
half of automobiles from entering the city center each day based on the odd or even last digits of their license plates. 
Another similar restriction program was used in the 1980s in Caracas, Venezuela’s capitol and largest city, and in 
Athens, Greece, from 1985 until 1991 (de Grange and Troncoso 2011). In Mexico City, a one day per week driving 
restriction was introduced in 1989. Sao Paulo in Brazil, Bogota and Medellin in Colombia, and Santiago in Chile 
also introduced driving restrictions. More recently, after Beijing, a few more Chinese cities, including Changchun, 
Lanzhou, Hangzhou, Guiyang, and Chengdu, adopted driving restrictions (Wang et al. 2014). 

http://www.mep.gov.cn/gkml/hbb/qt/201403/t20140325_269648.htm
http://www.bjepb.gov.cn/bjepb/341240/index.html
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a.m. through 3 a.m. across all of metropolitan Beijing. Drivers who broke this rule could be fined 
100 RMB per day and required to drive back to their place of origin. 

The policy proved to be a success in reducing traffic congestion and ambient air pollution 
during the 2008 Olympics (Chen et al. 2013b). Encouraged by this apparently significant policy 
effect, the Beijing municipal government decided to continue with a similar but less restrictive 
program. For most of September 2008, the policy was kept in place, but in a smaller area inside 
and including the Fifth Ring Road.19 Starting September 28, 2008, Beijing officials announced a 
half-year trial of more permissive driving restrictions. This new measure, enforced from 6 a.m. to 
9 p.m., divided license plates into five groups based on their last number (one and six, two and 
seven, three and eight, four and nine, and five and zero) and assigned each pair to be restricted 
from driving on a specified weekday (Monday through Friday), with these restrictions rotated 
monthly among weekdays. 

When this half-year trial ended, the government started a new round of driving 
restrictions to last one year, with only minor changes in restriction times and rotation periods. 
The hours affected by restrictions were shortened to 7 a.m. to 8 p.m. and the rotation period was 
extended to 13 weeks (four periods a year) rather than monthly. In the following years, the 
municipal government continued this measure; this one-day-per-week driving restriction 
continues in Beijing through the present day. One minor modification, which came into force on 
January 9, 2011, provided for charging an additional 100 RMB penalty for a second violation on 
the same day, at least three hours after the first. 

2.3 Number 4, Chinese Culture and License Plate Number Distribution 

As discussed above, the number four is traditionally avoided. License plate number 
choice is no exception, as reflected in Table 1. If people did not have any particular number 
preference, each license plate tail number should have a relative equal share, around 10%. 
However, vehicle license plates ending in four accounted for less than 1.7% of the total in 2013 
and this proportion dropped even further, to 1.5%, in 2014, significantly less than the share of 
license plates ending in each of the other nine digits. 

                                                 
19Beijing is one of very few Chinese cities to possess multiple ring roads (or beltways). It is now served by six 
circumferential or loop routes (“ring roads”) that encircle the city center. The loop route nearest to the city center is 
the Second Ring Road, and the ring road farthest from the city center is the Sixth Ring Road. 
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Because there are very few vehicles with 4 as the last digit of their license plate, fewer 
vehicles are restricted on the four and nine restriction days (see Table 1). As a result, more 
vehicles than usual are allowed on the road on whatever weekday the tail numbers four and nine 
are restricted, compared with other weekdays. This variation in license plate tail numbers creates 
an exogenous shock that increases local traffic on whichever weekday is the “four and nine day” 
under the system of banning each pair of numbers on a rotating basis (described above). 

3.  Data Description and Statistical Challenges 

3.1 Data Source and Statistical Description 

In this study, we compiled three hourly data sets of Beijing’s local traffic congestion 
index (TCI), air pollutant measures and meteorological conditions. Our hourly data started at 4 
p.m. January 18, 2013, and ended at 7 a.m. December 25, 2014. We also constructed a daily 
record of date-specific characteristics that distinguish holidays and weekends from weekdays 
during 2013 and 2014. We describe each data source and variable measurement in detail below. 

3.1.1 Traffic Congestion Index 

The Traffic Congestion Index (TCI) was obtained from the Beijing Transportation 
Research Center (BTRC).20 The TCI is an aggregated index measuring traffic conditions in 
Beijing’s central city area. This index is used to evaluate overall performance of the road 
network and reflects road network congestion intensity under the interaction of road network 
supply and traffic demand (Wen and Zhang2014). The index is calculated using real-time speeds 
collected from over 40,000 cars daily in the area enclosed by the Fifth Ring Road, weighted 
based on traffic volumes on each road (Wen and Zhang 2014).21 The TCI has a scale of 0 to 10, 
with 0 meaning no congestion and ten referring to a completely congested road with no 
movement. According to the Beijing Transportation Research Center, when the TCI is four to 
six, it means light congestion, in which some of the ring roads or major arteries are jammed, and 
travelers need 1.5 to 1.8 times the average travel time to complete their trips. When the TCI 
ranges from six to eight, this is categorized as “moderate” congestion, in which most of the ring 
roads and major arteries are congested, and travelers have to spend 1.8 to two times the average 

                                                 
20For real-time TCI, please see http://www.bjtrc.org.cn/PageLayout/IndexReleased/zhishu.php. For a TCI 
description, please see http://www.bjtrc.org.cn/PageLayout/IndexReleased/IndexReader.aspx?menuid=li4. 
21For an extended discussion regarding TCI calculations, see Wen and Zhang (2014). 

http://www.bjtrc.org.cn/PageLayout/IndexReleased/zhishu.php
http://www.bjtrc.org.cn/PageLayout/IndexReleased/IndexReader.aspx?menuid=li4
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travel time to get to destinations. When TCI is in the range of eight to ten, most roads in the city 
are severely congested, and travelers need to spend more than double the normal travel time to 
complete their trips. The TCI is hourly average time series data. 

Table 2 provides TCI statistics from 4 p.m., January 18 2013 through 7 a.m., December 
25 2014. Because 1.8% of the original records were missing, we were left with 16,631 hourly 
TCI observations for the final analysis. The 24-hour TCI is averaged at 2.44. Through the entire 
24-hour day, over the two-year period, traffic was congested about 17.39% (2893/16631) of the 
time, indicating a TCI exceeding four in those time periods. In the daytime (7 a.m. to 8 p.m.), on 
average, there was congestion 29.77% (2892/9716) of the time. However, traffic congestion gets 
much worse during peak travel hours: during morning peak hours (7 a.m. to 9 a.m.), traffic is 
congested 45.15% (935/2071) of the time, while during evening peak hours (5 a.m. to 7 p.m.), 
there is congestion 50.96% (1063/2086) of the time. Further graphic analysis of hourly TCI 
distribution follows in a subsequent section. 

3.1.2 Air Quality Data 

Corresponding with the hourly traffic congestion index, air pollution measures are also 
hourly, in the form of the Beijing Air Quality Index (AQI) and hourly average concentration data 
for PM2.5, PM10, CO, and NO2, obtained from the Beijing Environmental Protection Bureau 
(EPB). This hourly pollution data was collected from eight state-controlled monitoring stations 
located within Beijing’s Fifth Ring Road, including Dongsi and Temple of Heaven in the 
Dongchen district, Wanshou Nishinomiya and Park Office in the Xichen district, the Agricultural 
Exhibition Hall and the Olympic Sports Center in the Chaoyang district, Wanliu in the Haidian 
district, and Gucheng in the Shijingshan district.22 In addition, we have also collected hourly 
PM2.5 concentrations reported by the US embassy in Beijing,23 which has monitored PM2.5 in 
Beijing since 2008 to provide such health information to Americans in Beijing; its monitoring 
station is located at the US embassy (39.9608E, 116.474N), within the Fourth Ring Road in the 
Chaoyang district. This hourly measure of PM2.5 from a different, independent source provides 
additional robustness in measuring the impact of traffic on pollutant concentration. 

                                                 
22For the geographic locations of the eight monitoring stations, please see the map at http://zx.bjmemc.com.cn/. 
Strictly speaking, the Gucheng monitoring station is located just outside the West Fifth Ring Road. However, we are 
including it in our sample because we need a station to reflect the pollution concentration level in the western part of 
Beijing. 

http://zx.bjmemc.com.cn/
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The AQI measures six atmospheric pollutants: ground-level ozone (O3), particle 
pollutants PM2.5 and PM10, carbon dioxide (CO), sulfur dioxide (SO2), and nitrogen dioxide 
(NO2).23 The AQI is an index ranging from 0 to 500, with higher values indicating higher 
pollutant concentrations. Air quality is defined as “excellent” if AQI is between 0 and 50, “good” 
if it is between 51 and 100, “slightly polluted” if it is between 101 and 200, “moderately 
polluted” if it is between 201 and 300, and “severely polluted” if higher than 300. A crude 
categorization refers to a day with AQI at or below 100 as “blue sky.” In addition to overall AQI, 
we are also interested more specifically in the hourly concentrations of four component air 
pollutants – PM2.5, PM10, CO, and NO2 – for two reasons. First, the official reported maximum 
value of AQI is 500, but Beijing has individual extremely polluted days when AQI would very 
likely exceed 500. For instance, Beijing’s smog on February 2, 2013 and January 15 and 16, 
2014 have been rated by the Ministry of Environmental Protection of China as beyond the index. 
As a result, during these extremely polluted days when the AQI is officially limited to 500, the 
concentration of specific air pollutants may better reflect Beijing’s air pollution level.24 Also, 
scientific studies have found that PM, CO, and NOx are the primary components of automobile 
exhaust (Wu et al. 2011) and our research uses econometric methods to investigate the impact of 
traffic on these specific pollutants. 

Table 2 provides descriptive information regarding hourly AQI and concentrations of 
specific atmospheric pollutants in 2013 and 2014. In our sample, the aggregated AQI ranges 
from six to 500 and averages 122.4 during this two-year period. Specifically, 49.22% 
(8165/16587) of hours in our sample are classified as “polluted,” and 17.78% (2949/16587) of 
hours at least moderately polluted. The pollution situation gets worse in winter (December 
through February), when our sample shows that 25.68% (974/3793) of hours are at least 
moderately polluted (AQI>=201), with 10.57% of hours classified at the serious pollution level 
(AQI>=301). 

                                                 
23An individual score (IAQI) is assigned to each pollutant, and the final AQI is the highest of those six scores. The 
pollutants can be measured quite differently. PM2.5 and PM10 concentrations are measured as averaged over 24 
hours, whereas SO2, NO2, O3, and CO are measured as averages per hour. The final API value is calculated per hour 
according to a formula published by the Ministry of Environmental Protection. See 
https://en.wikipedia.org/wiki/Air_quality_index. 
24For the formula used to convert specific pollutants to AQI, please see 
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/t20120302_224166.htm. 

https://en.wikipedia.org/wiki/Air_quality_index
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/t20120302_224166.htm
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3.1.3 Meteorological Conditions 

Our study also considers a variety of meteorological conditions expected to affect the 
level of air pollutants. These meteorological data were obtained from the ISD-Lite data set 
published by the National Oceanic and Atmospheric Administration (NOAA),25 including hourly 
average records of air temperature, relative humidity, dew point temperature,26 sea-level 
pressure,27 wind direction, and wind speed. 

Beijing’s air quality is not only affected by wind speed, but also in significant part 
determined by wind direction (see, for example, Guo et al. 2014 and Chen and Ye 2015). The 
benefit of northerly wind is due to a lack of heavily polluting industries in regions north of 
Beijing. However, easterly and southeasterly winds tend to bring pollutants from coastal and 
mid-China cities with dense populations and heavy industries that consume enormous amounts 
of coal and other fossil fuels (Liang et al. 2015). Therefore, we control for wind-specific impacts 
by including 16 wind directional quadrants and interacting these with 16 wind speed levels.28 

In addition, we have controlled for other meteorological variables, including air 
temperature, relative humidity, and dew point temperature, all of which affect air pollutants as 
well (see, for example, Liu et al. 2010a; Liu et al. 2010b). Indeed, some of these meteorological 
variables are correlated. For example, decrease in dew point temperature together with increasing 
sea-level barometric pressure is usually accompanied by northerly wind that brings drier and 
fresher air to Beijing (Liang et al. 2015). Summary statistics of meteorological variables are 
presented in Table 2. 

3.1.4 Date-Specific Controls 

We also constructed date-specific controls for our sampled period in 2013 and 2014, 
namely the “four and nine” restricted weekdays, official holidays, holiday-makeup days, odd-
even days and “day of the week” (one for each of the seven days). The four-and-nine day 
indicator is a binary variable, reflecting whether the tail numbers four and nine are restricted on 

                                                 
25See https://www.ncdc.noaa.gov/isd/data-access. 
26For detailed discussion of dew point temperature, please see 
http://www.weatherquestions.com/What_is_dewpoint_temperature.htm. 
27All meteorological variables are derived from hourly records, except for sea-level pressure, which is recorded 
every two hours. 
28For brevity, we denote wind directions as an index (1 to 16) that is summarized in Table 2. 

https://www.ncdc.noaa.gov/isd/data-access
http://www.weatherquestions.com/What_is_dewpoint_temperature.htm
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that weekday; 1 indicates that four and nine are restricted while 0 indicates otherwise. An official 
holiday (such as National Holiday, Labor Day, Chinese New Year, etc.) is denoted as a dummy 
variable as well, with 1 indicating an official holiday. For important national holidays, such as 
Labor Day (May 1) and National Day (October 1), people are allowed an extended holiday 
period of seven days, which usually include three paid-leave days, two unpaid-leave days, and 
two weekend days. People need to work on two other weekend days to make up for the two 
unpaid-leave days; therefore, we name these two days “holiday-makeup” days and use binary 
variables for them. The dummy variable odd-even day reflects the odd-even traffic restriction 
policy implemented during the APEC meeting on November 3-12, 2014, with 1 indicating an 
odd-even restriction was in effect. For brevity, the variable “day of the week” listed in Table 2 is 
an index representing each day from Monday (=1) through Sunday (=7). However, to control for 
the daily fixed effects from Monday through Sunday, the “day of the week” index will be 
transformed into seven dummies in our regression analysis. We control for these date-specific 
variables for two main reasons. First, these date-specific variables are expected to be highly 
correlated with the TCI. Second, these date-specific variables might affect concentration of air 
pollutants in other ways as well. For example, during holidays or APEC meeting times, air 
quality might be affected by other changes in economic activities, such as reductions in plant 
production and increases in tourism. Summary statistics for all of these date variables are also 
reported in Table 2. 

3.2 Statistical Challenges 

A natural start to exploring the correlation between urban traffic conditions and air 
quality is by directly plotting hourly variations of TCI and AQI together, as shown in Figure 3. 
As expected, traffic patterns show clear morning and evening peaks, which start at around 8 a.m. 
and 6 p.m., respectively. However, we observe an almost opposite diurnal pattern of annual 
average hourly AQI distribution, which reaches a lower level in the morning followed by another 
bottom at around noon. Moreover, the highest AQI level appears around midnight, when, at 
almost the same time, traffic congestion reaches its lowest level. Hourly correlation patterns 
between TCI and other specific air pollutants, i.e., PM2.5, NO2, and CO, show the same change 
trend as AQI (see Graph A1). 

All of these pattern analyses suggest that there is a negative correlation between traffic 
and air quality by time of day. This contradicts our expectation and indicates that simple OLS 
might lead to biased estimates, due to either omitted variable bias (OVB) or reverse causality. 
First, the observed inverted relationship could be driven by other omitted factors; for example, 
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meteorological conditions are known to affect dispersion of air pollutants that significantly affect 
local air quality. Scientific studies have pointed out that relatively high pollution levels occur at 
night because of temperature inversion, which occurs at night and traps pollutants near the 
earth’s surface (Meng et al. 2008). Once any of these omitted factors (i.e., other determinants of 
air pollution, such as meteorological conditions or date-specific characters) are correlated with 
city dwellers’ travel behavior (and therefore TCI), typically OVB occurs. Second, even if we 
could control for detailed temporal factors and weather variables, reverse causality might be 
another source of potential identification challenges that threaten our estimation results (Davis 
2008; Viard and Fu 2015). For instance, in response to polluted weather, people might avoid 
taking outdoor trips to reduce their exposure, which would lead to less traffic on those days 
(Neidell 2009). 

4.  Identification 

4.1 OLS Estimates 

The first concern with our empirical work discussed in Section 3.2 is that simple OLS 
fails to control for confounding factors that 1) are correlated with traffic conditions and 2) exert 
their own separate effects on air quality, for example, meteorological conditions, holidays, 
season-specific shocks and pollution levels remaining from previous time periods (lagged 
pollution levels). If the statistical challenges only come from potential OVB, one common 
solution is to estimate a multiple linear regression model using OLS, while controlling for other 
confounding factors that might affect both TCI and the concentration of air pollutants, as 
described by the following equations: 

0 1 , -1+ymdh ymdh ymdh ymd ymd h y m h ymdhPoll TCI W Z Pollβ β θ γ τ l m h ε= + + + + + + +  (1) 
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where subscript sets y, m, d, h denote the year, month, day, and hour, respectively. Pollymdh 
denotes hourly AQI as well as hourly concentration of specific air pollutants for AQI, PM2.5, 
PM10, NO2, and CO. TCIymdh represents the average hourly Traffic Congestion Index (TCI) in 
central Beijing. We carefully construct hourly meteorological conditions (see Equation (2)), 
Wymdh, which include temperature (Temymdh), relative humidity (Rhuymdh), sea-level air pressure 
(Slpymdh) and wind velocity. The latter is a vector of interaction variables, created through the 
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interactions of 16 wind direction dummies (Dirymdh) with wind speed (Wspymdh). Zymd is a vector 
of variables that control for unobserved temporal factors, including the dummies such as holiday, 
holiday-makeup, odd-even day and day of the week. Lagged pollution, Pollymd,h-1, is included to 
allow for persistence of air conditions across hours, and also to capture the initial state of air 
pollution for the next hour. λy, μm, and ηh capture fixed effects of year, month, and hour, 
respectively. 

Table 3 presents the estimation results of five OLS regressions with different sets of 
control variables. The dependent variable is the logarithmic form of hourly AQI averaged across 
the eight monitoring stations within the Fifth Ring Road. The key explanatory variable is hourly 
average TCI in the central city area. Starting from a simple OLS in Column 1, we gradually add 
meteorological conditions (Column 2), date-specific characters (Column 3), time-fixed effects 
(Column 4) and lagged pollution variables (Column 5). Our benchmark specification with most 
control variables is listed in Column 5, in which R2 is even larger than 0.94. However, the results 
are still similar to our findings in Figure 3 in terms of sign: there is a significantly negative 
relationship between air quality and traffic congestion even when a set of variables including 
meteorological conditions is controlled. We suspect reverse causality might be another potential 
source of endogeneity that will affect our causal effects identification. As mentioned above, 
travel behavior (either travel choice or travel mode) can also be affected by temporal air 
pollution level, which in turn changes the TCI level. 

4.2 Performance of the Four and Nine Days 

In Figure 4, we compare hourly variations of TCI and AQI between “four and nine” days 
and other weekdays. Figure 4 (a) shows traffic congestion is heavier on the four and nine days 
compared with other weekdays, indicating Beijing’s traffic conditions are significantly correlated 
(95% CI is not overlapped) with whether the number four is restricted. In principle, the TCI 
discrepancy between the four and nine days and other weekdays might only be observable during 
the hours affected by the driving restriction policy. However, Figure 4(a) clearly shows this 
discrepancy actually emerged early in the morning (starting at 6 a.m.) and continued late at night 
(until 10 p.m.), at least three hours longer than the official restricted time. Therefore, although 
some drivers may try to avoid heavy congestion at peak hours by leaving early and returning 
late, there should be more of them on dates when numbers four and nine are banned, given that 
the traffic is much worse on those days. While more vehicles on the road will naturally lead to 
higher vehicle emissions, the AQI difference might not be noticeable by comparing the four and 
nine days to other weekdays due to the cumulative and continuous characteristics of air 
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pollutants as well as meteorological variations. Figure 4(b) shows there is no significant 
difference in hourly AQI variation (some have 95% CI overlapped) between the four and nine 
days and other weekdays. This is consistent with our general observations, because a four and 
nine day is only one day in any given week, with another weekday or a weekend before and 
after. Figure 4(b) further confirms the speculation that we might find an insignificant effect of 
the driving restriction program on air quality if we only rely on a reduced form that directly 
establishes the link between the four and nine days and AQI.29 Therefore, we adopt a different 
estimation strategy from that used by Sun, Zheng and Wang (2014) and Zhong (2015) in that we 
use the four and nine days as an instrument for TCI through which to establish the link between 
TCI and AQI. 

To further illustrate the characteristics of the four and nine days, we compare the 
difference in TCI, bus passenger ridership (BPV), subway passenger ridership (SPR),30 and AQI 
between the four and nine days and other restricted (normal weekday) days and non-restricted 
days in Table 4. The first column indicates that congestion is much heavier on the four and nine 
days compared to other restriction days, as discussed above. Another finding is that, on the four 
and nine days, both bus and subway passenger ridership is generally significantly lower than on 
other restriction days, suggesting that, on the four and nine days, more people shift to private 
vehicles for public transport (see Columns 2 and 3).31 Again, we lack any conclusive finding 
regarding AQI in comparing the four and nine days with other weekdays (see Column 4). This 
underscores that TCI is the only clear channel that links the four and nine days with AQI. 

In sum, the significant difference in number of vehicles between the four and nine days 
and other weekdays demonstrates the validity of this exogenous variation and enables us to test 
the impact of traffic congestion on air quality. The variations in TCI on the four and nine days 
extend from restricted to unrestricted hours, which in turn enlarges the IV’s shock to TCI and 
unintentionally rectifies the distribution of license plate numbers on the four and nine days. 

                                                 
29Other specific air pollutants, i.e. PM2.5, NO2 ,and CO, show the same results as the AQI (see Graph A2). 
30Summary statistics for daily volume of public transport passengers (both BPV and SPV) are listed in Table A1. 
31During official holidays, people may make fewer trips, in which case both traffic flow and public transit usage 
would be reduced. However, on the four and nine days, more vehicles are allowed on the road than on other days, 
indicating that the public could choose to shift from public transport to private vehicle. Therefore, there might exist 
substitution effects between public transport commuting and private vehicle use, as described in Table 4. 
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5.  Estimating Traffic-induced Air Pollution 

5.1 2SLS Specification 

To obtain consistent estimates, we use IV estimation to overcome endogeneity. As 
discussed previously, we apply a generalized 2SLS framework in the first stage to test whether 
traffic conditions are affected by the exogenous shock of the four and nine days; in the second 
stage, we estimate whether the traffic changes result in a greater concentration of air pollutants. 

We first run the following first-stage regression, in which TCI is regressed as a function 
of both the IV and other relevant control variables: 

0 1 , -1ymdh ymd ymdh ymd ymd h y m h ymdhTCI IV W Z Pollα α d ω τ l m h ε= + + + + + + + +  (3) 

Here, we use the four and nine days (IVymd) as an instrument for TCIymdh. Subsequently, 
the second stage equation estimates the impact of traffic conditions on air quality, which is 
essentially induced by IVymd: 



0 1 , -1ymdh ymdh ymdh ymd ymd h y m h ymdhPoll TCI W Z Pollβ β θ γ τ l m h ν= + + + + + + + +  (4) 

We are mainly interested in the estimated coefficient β1, which captures the direct effect 
of traffic conditions on air pollution. Because the variation in TCIymdh arises from superstitions 
about the number 4, it is arguably independent of other confounding factors (for example, Wymdh, 
Zymd) and other temporal factors in Equation (3) that might affect εymdh, which mitigates concerns 
about reverse causality. 

5.2 Estimation Results 

We use the generalized 2SLS framework to examine the links between TCI and AQI, 
with results presented in Table 5. We examined the impact of traffic conditions on air quality, 
using three different model specifications: a linear-linear model (Columns 1 and 2), log-linear 
model (Columns 3 and 4), and log-log model (Columns 5 and 6). The first-stage estimates of 
each specification are listed in Columns 1, 3, and 5; second-stage estimation results are listed in 
Columns 2, 4, and 6. 

In the first stage, we use both TCI (Column 1) and log TCI (Columns 3 and 5) as 
dependent variables to estimate the influence of the four and nine days on traffic conditions, 
while controlling for meteorological conditions, temporal factors, and fixed effects using our 
benchmark specification (Column 5 of Table 3), including holiday dummies, holiday-makeup 
dummy, odd-even days, yearly fixed effect, monthly fixed effect, day of the week fixed effect, 
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hourly fixed effect, and lagged pollution level. As expected, the coefficients of the four and nine 
days are all positive and highly significant in the first-stage estimations, suggesting that traffic 
conditions are much worse on the day when the tail numbers four and nine are restricted. 
Compared with other days, the traffic congestion index on four and nine days is increased by an 
average of 0.54-0.55 (Columns 1 and 3), which is 14% higher (Column 4) and significant at the 
1% level. In addition, the first stage F statistic is higher than 25, and this high significance 
suggests the selected IV is a valid and reliable instrument. 

In the second stage, we further examine the impact of traffic conditions on air quality 
induced by the four and nine days factor. In all three model specifications, the results show the 
estimated coefficients of TCI are positive and significant at the 1% level, suggesting traffic 
congestion has a significant influence on air quality. Specifically, a one-unit increase in TCI will 
result on average in an increase of 19 in AQI (Column 2), which is a 19.5% increase in AQI 
(Column 4). The elasticity estimation from the log-log model specification suggests that a 10% 
increase in TCI will lead to a 7.5% increase in AQI. 

We then use a similar approach to analyze the average concentrations of PM2.5, PM10, 
CO, and NO2 linked to traffic conditions. Following our approach for AQI, we also conduct the 
estimations using linear-linear model specification, linear-log model specification, and log-log 
model specification. The results are presented in Table 6. Note that we have also controlled for 
all other variables as our benchmark specification (Column 5 of Table 3). In all specifications, 
the results show that TCI has positive and significant influence on air pollutants. In the semi-log 
estimation, we find that a one-unit increase in TCI level will result in an average increase in 
PM2.5 of 15.24%, PM10 of 20.48%, NO2 of 17.33%, and 22.81% of CO. For the log-log 
specification, we find a 10% increase in traffic congestion level will result in an average increase 
in PM2.5 of 5.59%, PM10 of 7.19%, NO2 of 6.7%, and CO of 9.89%. Estimated elasticity between 
traffic and CO (log-log specification) is close to 1, indicating they have almost perfect elasticity. 
This is highly in line with the conclusions of previous scientific literature and indicates our 
model performs well. Scientific studies report that the primary source of CO in developing 
metropolises is vehicular emissions (Han and Naeher 2006). This is particularly true in Beijing 
(Wu et al. 2011). 

5.3 Traffic-Induced Air Pollution 

The direct explanation of the 2SLS estimation results relates to superstition-induced 
variations in air pollution in Beijing: The four and nine days result in a TCI increase of 0.54-0.55 
(see Columns 1 and 3 in Table 5), which worsens AQI by an average of 10.53%-10.73% 
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according to our second-stage estimation (i.e., semi-elasticity is 19.51% in Column 4 of Table 5). 
Similarly, for the specific pollutants PM2.5, PM10, NO2 and CO, 8.38%, 11.26%, 9.53%, and 
12.54% are estimated to be caused by extra vehicles on the road; the first stage is the same as the 
AQI and the second stage semi-elasticity estimations are listed in Table 6. 

To evaluate traffic-induced air pollution in Beijing, we combine our 2SLS results with 
observed TCI values (listed in Table 2) for further analysis. Note that the mean value of TCI in 
our research sample is 2.44 (Table 2). With this information, combined with the semi-elasticity 
estimates (see log-linear results listed in Table 6), we are able to calculate the contribution of 
traffic to air pollutants in Beijing by multiplying 2.44 by each of these semi-elasticity estimates 
The analysis suggests that traffic contributed 47.6% of the deteriorating air quality in Beijing. In 
particular, for levels of PM2.5, PM10, NO2 and CO, 37.19%, 49.94%, 42.29% and 55.66% are 
estimated to have been caused by traffic. 

5.4 Hourly Marginal Effects 

To further detect how hourly air pollution concentration varies with traffic conditions, we 
apply our 2SLS regression for the 24 hourly sub-samples of TCI, AQI, and other specific air 
pollutants. For each of these 24 regressions, we use a log-linear model and benchmark 
specification (removing the hourly fixed effect). Figure 5 shows the relationship between hourly 
average TCI and its relative marginal contribution to air pollutants, using hour as the horizontal 
axis (0-23) and marginal TCI contributions at different levels as the left vertical axis. In Figure 5, 
the bar chart below in yellow is the histogram of the TCI mean value at different times, while the 
solid line and shaded parts above represent the estimated marginal contribution of hourly sub-
samples and their respective 95% confidence intervals. 

The results using hourly sub-samples also demonstrated that TCI exerts significant and 
positive influence over air pollutants across hours, as depicted in Figure 5 (a)-(d). However, the 
marginal effect of TCI on air pollutants varies substantially across hours, and a diminishing 
marginal effect was observed: the higher the level of TCI, the lower the marginal impacts on air 
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pollutants.32 As introduced in Section 3, the TCI measures overall traffic congestion of the 
network using real-time vehicle speed from floating cars weighted by traffic volume, but mainly 
based on vehicle speed. When the road is clear – for example, when the TCI is less than 2 – a 
one-unit TCI increase would allow for a large number of vehicles swarming into the road, 
resulting in a large concentration of vehicular emissions. However, as traffic congestion spreads 
and intensifies – for example, when the TCI is larger than 4 – adding only a few vehicles on the 
road would increase TCI by one unit, though resulting in a small amount of incremental 
vehicular emissions. In other words, Figure 5 (a)-(d) provides evidence that the level of traffic-
induced air pollutants is more directly related to vehicle volume than speed. On average, the 
marginal effects of traffic on AQI at night (8 p.m. to 8 a.m.) are 2.47 times the marginal effects 
during the day (8 a.m. to 8 p.m.). For specific pollutants, the nighttime marginal effects for 
PM2.5, PM10, NO2, and CO are estimated to be 2.86, 2.62, 3.74 and 2.86 times the daytime 
marginal effects. 

5.5 Estimation of Traffic-induced Air Pollution by Congestion Level 

Based on the cumulative nature of traffic congestion, estimating marginal effects across 
either hours or specific congestion levels cannot directly reveal the relationship between traffic 
congestion and air pollutant concentration. Moreover, the discrepancy of marginal effects 
between daytime and nighttime reveals evidence of a potentially non-linear relationship between 
TCI and air pollution. To address this issue, a common practice is to construct a quadratic (or 
even higher-order) form of TCI to capture the potentially non-linear effects. However, adding a 
squared TCI to the model would require another instrumental variable because now both TCI and 
squared TCI are endogenous variables. Unfortunately, we cannot match the number of 
endogenous variables even by adding another instrument using the squared value of the four and 
nine days instrument because our IV is a dummy variable. The squared value of a dummy is the 
same as itself and this would not add to our model. 

32 Because Beijing’s driving restriction program is only enforced from 7 a.m. to 8 p.m., a potential argument about 
our hourly estimation is that the IV (four and nine days) may only affect the TCI that falls in this hourly range. 
Despite the restricted hours, Figure 5 (a) shows that the TCI discrepancy in traffic congestion between the four and 
nine days and other weekdays actually emerged as early in the morning as 6 a.m. and continued as late at night as 11 
p.m., roughly four hours longer than the effective vehicle restriction time. In fact, the effective shock of hourly TCI
induced by the IV has been enlarged, due either to people’s non-compliance or compensating responses. Even if our 
hourly impacts discussion were only based on the effective vehicle restriction time, all of our basic findings 
discussed in Section 5.3 would still hold. 
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To address this defect, we take a different approach to evaluate the contributions of 
vehicle traffic to concentration of specific air pollutants as traffic congestion gradually worsens, 
as described by the following equations: 
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Similarly, we apply the 2SLS regression for each sub-sample of TCI as TCI increases by 
a level of 0.5. For each estimation, we multiply the estimated coefficient β1 (marginal effect of 
TCI on air pollutants) by its relative mean value of TCI to obtain the contributions of vehicle 
traffic to air pollutants as traffic congestion escalates.33  

In Figure 6, the solid line above depicts contributions of vehicle traffic to air pollution 
concentrations as TCI increased by a level of 0.5, and the shaded portions represent 95% 
confidence intervals. Graphic analysis clearly shows that there is a U-shaped relationship 
between TCI and its cumulative contribution to air pollution. Specifically, the contributions of 
vehicle traffic to AQI (Figure 6(a)), PM2.5 (Figure 6 (b)) and NO2 (Figure 6 (c)) stays stable or 
rises slowly when the TCI is smaller than 5.5. After that, the impacts rise at a substantial growth 
rate, indicating air pollution damage is becoming more severe at an increasing rate as traffic jams 
get worse, with the air damage, in other words, worsening faster than the traffic. Taking AQI as 
an example, vehicle traffic only contributes to 2.18% of the deterioration in air quality when TCI 
is 5, and 2.67% when TCI is 6; however, this contribution increases to 9.45% and 26.86% when 
TCI reaches 7 and 8. The contribution of vehicle traffic to CO also exhibits the same rule as 
other air pollutants (Figure 6 (d)) but the inflection point appears a little bit earlier, 
approximately when TCI equals 5. In summary, these findings confirm that worsening traffic 
conditions contribute heavily to air pollution, particularly after a definable inflection point. 

                                                 
33For example, if we start from the subsample in which TCI is less than 2, we estimate the marginal effect of TCI on 
Log (AQI) using our 2SLS estimation to obtain the estimated coefficient of TCI (=0.0583). We then multiple the 
estimated coefficient (=0.0583) by the mean value of TCI (=1.2019) to get the contribution (=0.0700 or 7%) of 
vehicle traffic on Log (AQI) when TCI is less than 2. Next, we continue to evaluate the total traffic-induced air 
pollution when the TCI is less than 2.5, and then when the TCI is less than 3, continuing this process until the TCI is 
less than 9.5, which includes all TCI distributions. 
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The bar chart below, Figure 7, is the density distribution of TCI. As shown in the figure, 
even if the total congested time (TCI>5)34merely accounts for 10.5% of all hours, the increment 
of air pollution (AQI) generated is at a level estimated at 4.5 times that averaged during the 
89.5% of time classified as “not congested” (TCI<=5). Similarly for other pollutants, PM2.5, 
NO2, and CO, increments of traffic-induced air pollutants resulting during congested time 
average, respectively, 3.77, 6.01, and 5.3 times larger than that resulting during similar periods 
of non-congested time. The policy implication of this finding supports regional traffic diversion, 
especially when the TCI is larger than 5.5. 

6.  Additional Evidence and Further Discussion 

6.1 Air Quality Data 

Even though Tables 5 and 6 provide causal evidence linking traffic conditions with air 
quality in Beijing, a potential concern with the results is that officially reported air quality data 
might be deliberately manipulated, which would introduce non-classic measurement error (Chen 
et al. 2012; Ghamem and Zhang 2014). Because China defines a day with an AQI (or API before 
2013) at or below 100 as a “blue sky” day, local authorities benefit from positive publicity. In the 
absence of independent verification mechanisms, the discontinuous incentive structure implicitly 
created might be associated with anomalies in AQI scores near that cut-off point (AQI=100) 
(Ghamem and Zhang 2014). We speculate that local governments may be less likely to report 
AQI numbers just above 100 when they are close to achieving “blue sky” days. Discontinuity 
around the cut-off (API=100) would suggest the count of blue sky days may have been subject to 
data manipulation (Chen et al. 2012). 

A place to start data checking is by duplicating density analysis from existing literature 
and applying it to the air quality data in this paper. Figure A3 (a) to (h) shows AQI densities 
from eight state-controlled air quality monitoring stations located within Beijing’s Fifth Ring 
Road, while Figure A3 (i) shows average city-wide AQI density. We highlight the potential cut-
off point where AQI equals 100 to check whether a suspicious degree of discontinuity occurs 
around the cut-off. In contrast with previous studies, we fail to find any significant discontinuity 
around the cut-off point for any of the density graphs, indicating that the hypothesis about data 

                                                 
34Slight congestion is defined as TCI larger than 4. In order to keep in line with the turning point that appears when 
TCI falls by 5 to 5.5, we calculate the proportion of the time that TCI is larger than 5. 
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manipulation does not hold for our air quality data. There are two possible explanations for our 
divergence from some earlier studies. First, our study used AQI data from 2013 and 2014, while 
both studies by Chen et al (2012) and Ghamem and Zhang (2014) used air pollution index (API) 
data from before 2010. Since 2013, with the unprecedented attention paid by the central 
government to air quality, coupled with requirements that air pollutant records be reported on-
line in real time, air quality monitoring data may have been significantly improved. Second, prior 
studies used daily API from local government-controlled monitoring stations, while we collected 
hourly AQI from state-controlled monitoring stations, which directly report their data to China’s 
Ministry of Environmental Protection and have reported real-time air quality information on-line 
since 2013. Therefore, the possibility of intentional data manipulation has been limited. 

An alternative way to test the credibility of air quality data is to compare the difference 
between state-controlled monitoring data and US Embassy monitoring station data35. We chose 
three state monitoring stations – the Agricultural Exhibition Hall (39.9716 E, 116.473 N), 
Dongsi (39.9522 E, 116.434 N) and the Olympic Sports Center (40.0031 E, 116.407 N) – with 
distances to the US Embassy36 of 1.5 km, 5.5 km, and 6.6 km, respectively. The relevant PM2.5 

statistics from these monitoring stations are displayed in Table 7. As shown there, the average 
PM2.5 provided by the US Embassy is higher than that of the national monitoring stations, in the 
range of 7.43-8.22 (Column 2 in Table 7). However, the difference between the two closer 
monitoring stations – Agricultural Exhibition Hall and Dongsi – and the US Embassy is not 
statistically significant once we control for station-level effect. In Column 4 of Table 7, in order 
to conduct a robustness check, we used our 2SLS method to estimate the links between traffic 
and air pollution based on the PM2.5 concentration provided by individual stations rather than the 
city average level used previously. The results show the estimated semi-elasticity of traffic-
induced PM2.5 with AQI is 0.1932 using US Embassy PM2.5 data. The estimated coefficients 
using the PM2.5 data from the closer monitoring stations, the Agricultural Exhibition Hall and 
Dongsi, are 0.2 and 0.1871, respectively. These estimates are quite close, with the difference less 
than 0.01. However, with increased distance (see the Olympic Sports Center station in Column 
4), the estimated difference also increased, in line with our expectation. 

                                                 
35See http://www.stateair.net/web/post/1/1.html. 
36See http://www3.epa.gov/pm/implement.html. 

http://www.stateair.net/web/post/1/1.html
http://www3.epa.gov/pm/implement.html
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6.2 Alternative Traffic Measurement 

Another concern is that our results might be highly dependent on the quality of traffic 
measurement, given that we rely on the TCI, which is a secondary aggregated index, rather than 
on directly observable information. Considering this issue, we conducted a further robustness 
check by collecting daily records of vehicle speed within the Fifth Ring Road during the morning 
peak (7 a.m. to 9 a.m.) and evening peak (5 p.m. to 7 p.m.) driving times during the study period. 
Data source and summary statistics are in Table A2. 

In Columns (1) to (4) of Table 8, we use TCI and vehicle speed as the traffic 
measurement to estimate the effect of traffic conditions on AQI during the morning peak period 
(MP) and evening peak (EP) period. Following the previously discussed 2SLS method, we used 
daily average records, controlling for district fixed effects in the model specification. The results 
show that, during the morning peak, estimated semi-elasticity is 0.08 (Column (1)) using TCI 
measurement while it is -0.04 (Column (2)) using vehicle speed measurement. Similarly, during 
the evening peak, the estimated semi-elasticity is 0.06 (Column (1)) using TCI measurement, 
while it is -0.03 (Column (2)) using vehicle speed measurement. Lower vehicle speed indicates a 
higher level of traffic congestion, leading to a higher TCI value, in line with our expectations. 
However, it is difficult to compare the magnitude of estimates using the two different measures. 
The estimated semi-elasticity using TCI is around double that using vehicle speed. These results 
also hold when we estimate the impact specifically on PM2.5 (in Columns (5) to (8) of Table 8), 
NO2, and CO (Table A3). To better understand the magnitude of these estimates and their 
implications, we further explore the links between TCI and vehicle speed. 

Figure 7 examines the relationship between TCI and vehicle speed during morning and 
evening peak hours, using local polynomial smooth plots with 95% confidence intervals. The 
diamond blue line and square red line represent the plot lines derived from the MP and EP, 
respectively. These two lines, based on different time periods, are highly consistent, reinforcing 
that we do capture the nature of the relationship between TCI and vehicle speed. The figure 
shows there is a non-linear relationship between TCI and vehicle speed with two inflection 
points.37The average vehicle speed at MP is 30.95 km/hour and at EP is 26.71 km/hour, 

37Local polynomial smooth plots cannot directly obtain accurate values of the thresholds because smooth plots 
depend on the selection of smooth piecewise polynomial functions. However, we can easily detect the credible range 
of the inflection points: the first occurs when TCI falls in the range of values between 1.5 and 2 (vehicle speed 
between 34 and 36 km/hour) and the second occurs when TCI falls in the range of values between 8.5 and 9 (vehicle 
speed between 16 and 18 km/hour). 
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highlighted by the two dashed lines. We then use the average value of vehicle speed to discuss 
estimated coefficients in Table 8. For instance, when the MP TCI increases from 3 to 4, the 
corresponding MP vehicle speed (Figure 7) decreases from 30.82 km/hour to 28.69 km/hour. 
Together with the estimated marginal effects in Column 2 of Table 8, we estimate that AQI will 
increase by 8.35% (28.69-30.82)*(-0.0392)), which is quite close to the estimated TCI semi-
elasticity (8.01%) in Column 1 of Table 8. We further find that, if we use TCI and vehicle speed 
to measure traffic conditions, the absolute and relative differences, respectively, in estimated 
traffic-induced air pollution during the morning peak are only 0.24% and 4.06% (= (8.35-
8.01)/8.35*100%). Similarly, when the EP TCI increases from four to five, the corresponding EP 
vehicle speed (Figure 7) decreases from 27.94 km/hour to 26.01 km/hour. If we use TCI and 
vehicle speed to measure traffic conditions, the relative difference in estimated traffic-induced 
air pollution during the morning peak is only 5.94%.38 

In sum, our estimates are quite robust under different conditions, i.e., when we use 
alternative air pollution data sources and traffic congestion measurements. 

6.3 Local Effects and Marginal Effects 

The main advantage of using IV is that it makes explicit the source of TCI variation used 
to evaluate traffic-induced air pollution. However, a common drawback of IV estimation is that it 
is only based on “compliers” affected by the instrument (Imbens and Angrist 1994). Specifically, 
not every vehicle in our sample responds to the instrument, and therefore our IV results are only 
representative of those extra vehicles driven on roads on the weekday when the tail number four 
is restricted from driving. One might posit that, if vehicular emissions are not constant between 
tail number four vehicles and other vehicles, our 2SLS framework would only estimate the local 
average effects on air quality induced by the sub-sample of vehicles allowed to drive on the four 
and nine days. If that were the case, estimated impacts of traffic control policies on Beijing’s air 
quality in existing studies might not be as large as our policy evaluations suggest when using our 
IV estimator. To address this concern empirically, we proceed to compare our assessment of 
policy interventions with representative economic studies that directly examine total average 

                                                 
38The same analysis was conducted using other pollutants: PM2.5, NO2, and CO. The calculated absolute difference 
in the effect of TCI and vehicle speed on air pollution is very small. The calculated relative difference between these 
two is also less than 10.86%. 
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treatment effects of different traffic control policies in Beijing using alternative empirical 
strategies. 

Table 9 presents estimated results of Beijing’s traffic control policies in different periods:  
the odd-even restriction during APEC and the one-day-per-week restriction. Table 9 (Column 1) 
reports the impact of the odd-even restriction during APEC on TCI: the odd-even restriction 
reduced TCI remarkably, by 1.1, within the Fifth Ring Road. Using our benchmark estimation 
with semi-elasticity 0.1951 (Column 4 of Table 5), we then calculated a reduction of AQI of 
21.53% (Column 2) due to the APEC conference odd-even restriction. As a comparison, Column 
3 of Table 9 presented estimates by Viard and Fu (2015) that used the RDD to explore the impact 
of the odd-even restriction on Beijing’s air quality; they found that AQI was reduced in a range 
of 19.28% to 21.74%. Similarly, our empirical strategy found that the one-day-per-week 
restriction reduced TCI by 0.45 and mitigated AQI by 8.87%. This is also highly in line with the 
finding by Viard and Fu (2015), who estimated the air quality impact between 7.93% and 
14.81%. 

Our results show that traffic-induced air pollution on the days when the tail number four 
was restricted increased by 10.61% (Column 2, Table 9). The average TCI increased by 0.54 (the 
first column of Table 9) on that day because the restriction affected fewer vehicles. However, 
using a reduced form which directly examined the impacts of the four and nine days on urban air 
pollutants, neither Sun et al. (2014) nor Zhong (2015) found that the four and nine days exerted 
any significant influence on AQI in Beijing. For comparison, we followed their empirical 
strategy and used reduced form to directly explore the impact of the odd-even restriction, one-
day-per-week restriction and four and nine days on air quality. We found the directly observed 
AQI significantly decreased by 54.54% during the period of odd-even restriction; however, no 
significant effect was detected for either the one-day-per-week restriction or the four and nine 
days (Column 4 in Table 9). Again, this reflects that, in a typical IV setting, the four and nine 
days exert indirect influence on AQI only through the channel of traffic conditions. 

Despite the superior performance of our IV estimator in policy evaluations, the core issue 
of IV’s drawback is whether local effects of the IV estimator are close to the real marginal effect. 
Given that the one-day-per-week driving restriction is enforced from 7 a.m. to 8 p.m. on 
weekdays, the four and nine days could still induce a widespread shock on vehicles across all tail 
numbers due to non-compliance or compensating responses such as inter-temporal substitution 
of driving (Viard and Fu 2015). This is particularly true if we detect a significant difference in 
TCI between the four and nine days and other weekdays even during the unrestricted hours of the 
day (i.e., before 7 a.m. and after 8 p.m.). However, as revealed by part (a) of Figure 4, the 
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significant difference in TCI between the four and nine days and other weekdays lasts from 6 
a.m. to 10 p.m., far beyond officially regulated driving restriction hours. Such non-compliance 
and compensating responses therefore not only significantly extend the IV’s shock on traffic 
conditions in the first stage, but also, to a certain extent, rectify the distribution of license plate 
numbers on the four and nine days. This can explain why our policy evaluations are consistent 
with existing studies enumerated in Table 9. 

6.4 Systematic Difference of Vehicles with Plates Ending in Four 

The empirical evidence presented so far uses the mechanism of reverse reasoning in 
which our IV estimator has been a priori treated as the real marginal effect for traffic policy 
evaluation. In other words, the superior performance of the IV estimator in policy evaluations 
provides empirical support for the “pre-assumption” that our IV estimator is close to the real 
marginal effect. One potential objection to our analysis of the effect of congestion on pollution 
when using IV is that cars with license plates ending in four and nine are excluded from the 
sample, and these may differ in a systematic way from the rest of the sample, biasing the results. 
We have three responses. 

First, we believe that whether one believes in the superstition or not should be more 
shaped by specific cultural background than by seemingly irrelevant vehicle emissions from 
one’s car. In Chinese culture, people tend to avoid the number four regardless of whether they 
are poor or rich. This suggests that number four will be avoided as a tail number for all types of 
vehicles, regardless of whether they are luxury or economy automobiles, high-emission or low-
emission vehicles. 

Second, even if there are systematic differences between groups of vehicles based on 
their license numbers, the four and nine exclusion is not total. There are vehicles that violate the 
rules, and some four and nine cars are on the road during restricted times. Meanwhile, the 
exclusion is in effect only during certain hours; times before 7 a.m. and after 8 p.m. are 
unrestricted, and four and nine vehicles may be used. 

Finally, but more importantly, there is no basis for assuming any systematic difference in 
vehicles ending in nine. For vehicles ending in four, we could suspect potential systematic 
differences – for instance, as their owners are unusual in ignoring a common superstition, they 
may tend to be “non-conformists” and have systematically different cars as well. However, these 
vehicles with plates ending in four constitute only 1.5 percent of the total (see Table 1), so their 
exclusion could not have a major effect on the sample. In fact, for a period, Beijing’s municipal 
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government even removed number four from the last digit of randomly generated plate numbers 
(Sun et al. 2014; Viard and Fu 2015). As a result, the sample distribution of vehicles with other 
tail numbers will approximate the population distribution of all vehicles if four is not in the last 
digit list of plate numbers. 

In sum, if vehicle emissions are consistent across license plate numbers, the sample 
results are not changed by the exclusion of “four and nine” cars; even if there are some 
differences between the set of tail number four vehicles and other vehicles, these are likely to be 
minor and our IV estimates can capture most of the marginal effect of the vehicles on local air 
quality. 

7. Conclusion

Severe traffic congestion and poor air quality are two of the most pressing problems in 
developing metropolises from both health and economic perspectives. Traffic-induced air 
pollution is a crucial economic problem and the effect of potential policy interventions is an 
important area for economic analysis. In this paper, we used rich hourly data records from 2013-
2014 to investigate the effects of traffic on air pollution in Beijing. Our research objective was to 
answer two questions: First, what exactly is the traffic-induced contribution to air pollution in 
urban areas? Second, how does air quality vary with the severity of traffic congestion over time? 

These questions were examined in relation to Beijing’s one-day-per-week driving 
restriction. We showed that the widespread Chinese superstition avoiding the unlucky number 
four unintentionally releases extra vehicles onto the roads on days when vehicles with license tail 
number four are prohibited from driving. We found that the days when plates ending in four are 
restricted had 14% more traffic congestion than other weekdays. 

Using the variation in traffic conditions induced by “four and nine” days, the 2SLS 
estimation found that traffic has contributed 47.6% of the deterioration in Beijing’s air quality. 
For specific pollutants, our estimates are that, for PM2.5, PM10, NO2 and CO, respectively 
37.19%, 49.94%, 42.29% and 55.66% of these pollutants are caused by vehicle traffic. Our 
estimates differ from those of prior studies that used a reduced form to examine the difference in 
air pollution between the four and nine days and other weekdays. This suggests that focusing on 
traffic as the only impact channel of IV is important to addressing endogeneity, e.g., the potential 
of confounding traffic’s contribution to air pollution with contributions from other causes. 

By looping our 2SLS framework across sub-samples divided by small fixed TCI 
intervals, we discovered the non-linear relationship between traffic congestion and air pollution 
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without extra instrumental variables. Our graphic analysis shows a U-shaped relationship 
between traffic congestion and its cumulative contribution to air pollution. The inflection point 
of the U-shaped relationship occurs when TCI falls in the range of 5 to 5.5. Worsening traffic 
conditions after that point appear to disproportionately intensify the contribution of traffic 
congestion to air pollution.  While total hours in a state of traffic congestion account for 10.50% 
of all hours, incremental air pollution induced by congested hours (TCI>5) is 4.49 times that of 
the contribution of traffic during the “no congestion” time (TCI<=5). The apparent policy 
implication favors a regional traffic diversion strategy, at least when the TCI exceeds 5.5. 

We separately simulate the total impacts of the odd-even restriction and the one-day-per-
week driving restriction on air quality using our estimated coefficients. We show that our policy 
simulation results are in line with those of earlier studies that assess policy impacts through 
various empirical strategies. The superior performance of our IV estimator in policy evaluations 
underscores that our estimated local effects are close to real marginal effects. In fact, our IV 
induces an arguably widespread shock on vehicles across all tail numbers due to non-compliance 
or compensating responses such as inter-temporal substitution of driving. 

In recent months, Beijing has taken a series of emergency measures, including taking cars 
off the road to reduce air pollution on days classified as a red alert air pollution level. 
Meanwhile, the municipal government is considering introduction of a stricter odd-even driving 
restriction program for the entire winter, when coal-fired heating causes smog that causes severe 
deterioration in air quality. This research shows that efforts to keep the congestion index from 
rising above the “inflection point” (of 5 to 5.5) will have disproportionate effects in alleviating 
pollution. The research demonstrates clearly that congestion above that level has very 
disproportionate effects in worsening air pollution – after that point, pollution gets worse faster 
than congestion does – so pollution benefits from relieving congestion above that level will also 
be disproportionate. Our results can therefore provide a more rigorous basis for policy design of 
more effectively targeted air pollution abatement strategies, considering the dynamic relationship 
between traffic congestion and air pollution that varies over time and congestion level. 
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Tables and Figures 

Table 1. Distribution of Automobile License Plate Numbers 
Tail Number 2013 (Percent) 2014 (Percent) Definition of the four and nine days 

1 9.93 9.80  
2 9.86 9.84  
3 9.57 9.67  
4 1.71 1.51  
5 10.74 10.69  
6 12.26 12.37  
7 10.41 10.39  
8 12.76 12.88  
9 12.23 12.34  
0 10.53 10.51  

1 & 6 22.19 22.17 0 
2 & 7 20.27 20.23 0 
3 & 8 22.33 22.55 0 
4 & 9 13.94 13.85 1 
5 & 0 21.27 21.20 0 

Data source: Beijing Traffic Management Bureau, 2013-2014. 

Notes: The driving restriction policy in Beijing applies to all private cars on one weekday per week 
from 7 a.m. to 8 p.m. The tail numbers of license plates are put into five groups: one and six, two and 
seven, three and eight, four and nine, and five and zero. Each pair is assigned to a certain weekday 
(from Monday to Friday) for the driving restriction. The assignment of these number pairs to weekdays 
has been rotated every 13 weeks since 2010. For example, a car with a plate ending in five might be 
prohibited from driving on Monday in May but rotated to Tuesday in June. 
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Table 2. Summary Statistics 
Variable Def. (Unit) Mean SD Min Max N 
Air Pollutant      
AQI Hourly Index 122.4 86.95 6 500 16587 
PM2.5 Hourly record (μg/m3) 89.08 80.13 3 584.2 16584 
PM2.5 (US Emb.) Hourly record (μg/m3) 99.73 95.85 2 886 17339 
PM10 Hourly record (μg/m3) 123.2 91.77 5 1000 15866 
NO2 Hourly record (μg/m3) 62.19 33.72 3.667 235.8 16498 
CO Hourly record (mg/m3) 1.432 1.178 0.133 9.213 16413 
Traffic Congestion      
TCI Hourly Index (0-10) 2.442 1.779 0.613 9.444 16631 
Meteorological Condition      
Temperature Hourly average (Celsius) 13.13 11.77 -16 41 17520 
Relative humidity Hourly average (%) 52.84 25.49 3 109.5 17520 
Sea-level pressure Hourly average (hPa) 1016 10.26 991.2 1046 17520 
DewPT Hourly average (Celsius) 1.719 14.25 -40 26.90 17520 
Wind speed Hourly extreme (m/s) 2.817 2.075 0 17.50 17520 
Wind direction Index (1-16) 8.477 4.552 1 16 17520 
Date Variable      
The Four and Nine days Dummy (0, 1) 0.126 0.332 0 1 730 
Day of the week Index (1-7) 3.996 1.999 1 7 730 
Holiday Dummy (0, 1) 0.085 0.279 0 1 730 
Holiday-makeup Dummy (0, 1) 0.023 0.151 0 1 730 
Odd-even day Dummy (0, 1) 0.014 0.116 0 1 730 
Data sources: The measurements of air pollutants were obtained from the China National 
Environmental Monitoring Centre, 2013-2014 (see http://www.cnemc.cn/ and 
http://106.37.208.233:20035/); hourly meteorological conditions were downloaded from the ISD-Lite 
data set published by the National Oceanic And Atmospheric Administration (NOAA) (see 
https://www.ncdc.noaa.gov/isd/data-access). 

Notes: Table provides air pollutant records from 4 p.m., January 18, 2013 to 7 a.m., December 25, 
2014. In the raw hourly TCI records, 1.8% original records are missing on a random basis. Air 
pollutants consist of hourly average concentration of AQI, PM2.5, PM10, CO, and NO, calculated by the 
eight national monitoring stations located within the Fifth Ring Road of Beijing. PM2.5 (US Emb.) 
represents the hourly PM2.5 record obtained from the US Embassy monitoring station (39.9608E, 
116.474N), which is a different source of PM2.5 monitoring within the Fourth Ring Road of Beijing. 
Wind direction is an index denoted by 1 to 16, representing 16 wind directional quadrants. All 
meteorological variables are derived from hourly records, except for sea-level pressure, which is 
recorded every two hours. Holiday-makeup represents weekends when people go to work to make up 
for paid days before or after holidays. Day of the week listed in this table is an index representing 
Monday (=1) to Sunday (=7). However, both wind direction and the “day of the week” indexes will be 
transformed into dummies in our further regression analysis. 
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Table 3. OLS Regression: Biased Estimates Due to Either Omitted Variables or 
Reverse Causality 

 (1) (2) (3) (4) (5) 
 Ln(AQI) Ln(AQI) Ln(AQI) Ln(AQI) Ln(AQI) 
TCI -0.0254*** -0.0249*** -0.0282*** -0.0187** -0.0166** 
 (-3.48) (-3.95) (-3.73) (-2.61) (-2.51) 
Temperature  -0.0152*** -0.0155*** 0.0262*** 0.0229*** 
  (-5.32) (-5.27) (7.24) (6.00) 
Sea-level pressure  -0.0149*** -0.0150*** -0.0118*** -0.0109*** 
  (-23.56) (-24.40) (-16.64) (-14.63) 
Relative humidity  0.0041*** 0.0041*** 0.0064*** 0.0057*** 
  (3.29) (3.20) (5.07) (4.41) 
DewPT  -0.0015 -0.0015 0.0198*** 0.0183*** 
  (-0.47) (-0.48) (7.78) (7.97) 
Holiday   -0.0259*** -0.0814*** -0.0707*** 
   (-3.21) (-8.24) (-6.94) 
Holiday-makeup   0.0394 -0.0015 0.0106 
   (1.15) (-0.05) (0.37) 
Odd-even days   -0.2880*** -0.3429*** -0.3166*** 
   (-7.34) (-14.47) (-11.95) 
Lag. Ln(AQI)     0.0847*** 
     (3.12) 
Wind (Spd*16 Dir-dummies) N Y Y Y Y 
Day of the week FE N N Y Y Y 
Year FE N N N Y Y 
Month FE N N N Y Y 
Hour FE N N N Y Y 
_cons 4.6194*** 20.1878*** 20.1530*** 17.2532*** 15.8990*** 
 (187.77) (35.08) (35.98) (22.03) (18.04) 
N 15706 15706 15706 15706 14929 
R2 0.004 0.223 0.232 0.352 0.947 
Notes: We control wind-specific impacts (i.e., Wind (Spd*16 Dir-dummies) in this table) by including 
16 wind directional quadrants and interact these with 16 wind speeds. Standard errors are adjusted by 
clustering by the hour.t-statistics in parentheses; *p< 0.1, **p< 0.05, ***p< 0.01. 
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Table 4. Characteristics of the Four and Nine Days 

 (1) (2) (3) (4) 
Pairwise TCI-diff. BPV-diff. SPV-diff. AQI-diff. 

4&9 days vs odd-even days 1.5128*** -1.5842*** -0.8011*** 44.7715*** 
 (8.25) (-13.23) (-7.27) (4.87) 
4&9 days vs 1&6 days 0.5740*** -0.1771*** -0.0574* -0.6327 
 (10.61) (-5.15) (-1.82) (-0.24) 
4&9 days vs 2&7 days 0.4271*** -0.2234*** -0.0783** -6.7598** 
 (7.94) (-6.53) (-2.49) (-2.56) 
4&9 days vs 3&8 days 0.5260*** -0.1101*** -0.0303 -1.9161 
 (9.79) (-3.23) (-0.97) (-0.73) 
4&9 days vs 5&0 days 0.5865*** -0.1694*** -0.0453 6.0816** 
 (10.89) (-4.95) (-1.44) (2.29) 
4&9 days vs Other-restriction days 0.5388*** -0.1845*** -0.0605*** -0.3551 
 (11.90) (-9.08) (-2.73) (-0.17) 
4&9 days vs Non-restriction days 0.9010*** 2.0216*** 2.2997*** -0.8822 
 (19.96) (75.72) (87.48) (-0.40) 
Data sources: The daily volume of public transport passengers is provided by the Beijing Traffic 
Management Bureau 2013-2014. 

Notes: This table compares the differences in Traffic Congestion Index (TCI in Column 1), Bus 
Passenger Volume (BPV in Column 2), Subway Passenger Volume (SPV in Column 3) and Air 
Quality Index (AQI in Column 4) between four and nine days and other weekdays. It also compares 
these differences between the four and nine days and other-restriction days as well as non-restriction 
days. Summary statistics for the daily volume of public transport passengers (i.e., BPV and SPV) from 
2013 and 2014 are listed in Table A1. t-statistics in parentheses; *p< 0.1, **p< 0.05, ***p< 0.01. 
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Table 5. 2SLS Estimation for AQI: Level, Semi-Elasticities and Elasticities 

 (1) (2) (3) (4) (5) (6) 
 Linear-Linear Log-Linear Log-Log 
 1ststage 2ndstage 1ststage 2ndstage 1ststage 2ndstage 
 TCI AQI TCI Ln(AQI) Ln(TCI) Ln(AQI) 
TCI  18.7829***  0.1951***   
  (3.51)  (3.26)   
Ln(TCI)      0.7512*** 
      (3.64) 
Four and Nine days 0.5437***  0.5457***  0.1406***  
 (5.03)  (5.04)  (5.83)  
Temperature 0.0212*** 2.6249*** 0.0214*** 0.0186*** 0.0072*** 0.0176*** 
 (3.64) (8.34) (3.64) (5.32) (3.92) (4.77) 
Sea-level pressure 0.0068*** -0.7644*** 0.0063*** -0.0123*** 0.0022*** -0.0128*** 
 (4.41) (-8.42) (4.25) (-15.96) (5.05) (-16.83) 
Relative humidity 0.0056*** 0.6795*** 0.0057*** 0.0045*** 0.0020*** 0.0042*** 
 (3.28) (6.00) (3.25) (3.57) (3.89) (3.12) 
DewpT -0.0137*** 1.2884*** -0.0128** 0.0216*** -0.0044*** 0.0224*** 
 (-2.95) (4.52) (-2.77) (7.45) (-3.28) (7.01) 
Holiday -0.8251*** 5.1639 -0.8226*** 0.1166*** -0.3047*** 0.1846*** 
 (-4.02) (1.52) (-4.01) (4.39) (-4.71) (3.87) 
Holiday-makeup 0.7691** -20.7937*** 0.7737** -0.1481** 0.1862** -0.1370 
 (2.60) (-2.98) (2.61) (-2.13) (2.20) (-1.64) 
Odd-even days -0.9758*** -14.9158*** -0.9800*** -0.1057** -0.3735*** -0.0180 
 (-5.13) (-4.31) (-5.09) (-2.78) (-7.82) (-0.32) 
Lag. AQI -0.0005*** 0.2595***     
 (-4.40) (7.00)     
Lag. Ln(AQI)   -0.0793*** 0.0922*** -0.0190*** 0.0860*** 
   (-5.20) (3.33) (-4.47) (3.06) 
Wind (Spd*Dir) Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y 
Day of the week FE Y Y Y Y Y Y 
Hour FE Y Y Y Y Y Y 
1st stage F-stat. 25.40  25.45  34.31  
N 14929 14929 14929 14929 14929 14929 
R2 0.663 0.958 0.664 0.947 0.768 0.947 
Notes: Standard errors are adjusted for by clustering by the hour. t-statistics in parentheses; *p< 0.1, 
**p< 0.05, ***p< 0.01. 
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Table 6.  Impacts of TCI on Air Pollutants 

 (1) (2) (3) (4) (5) 
Linear-Linear AQI PM2.5 PM10 NO2 CO 
TCI 18.7829*** 14.8172*** 28.7321*** 9.0022*** 0.3746*** 
 (3.51) (3.33) (3.67) (4.25) (3.77) 
N 14929 14926 14094 14821 14782 
Log-Linear Ln(AQI) Ln(PM2.5) Ln(PM10) Ln(NO2) Ln(CO) 
TCI 0.1951*** 0.1524** 0.2048*** 0.1733*** 0.2281*** 
 (3.26) (2.54) (2.94) (3.73) (4.08) 
N 14929 14926 14094 14821 14782 
Log-Log Ln(AQI) Ln(PM2.5) Ln(PM10) Ln(NO2) Ln(CO) 
Ln(TCI) 0.7512*** 0.5587** 0.7190*** 0.6704*** 0.9890*** 
 (3.64) (2.58) (2.98) (4.33) (4.80) 
N 14929 14926 14094 14821 14782 
Notes: All regressions use the four and nine days to overcome the endogeneity of the TCI variable, 
while controlling for other temporal factors and removing fixed effects, strictly in line with Table 5. 
Coefficients of other control variables have expected signs and statistical significance. For brevity, they 
are not reported here. Standard errors are adjusted for by clustering by the hour. t-statistics in 
parentheses; *p< 0.1, **p< 0.05, ***p< 0.01. 



Environment for Development Chen et al. 

43 

Table 7. Monitoring Stations near the US Embassy 

Monitoring Stations (1) (2) (3) (4) 
(Location) Mean Unconditional Conditional Traffic-induced 

[Distance to US Embassy] (STD) Diff. Diff. PM2.5 
US Embassy 98.05   0.1932** 

(39.9608E, 116.474N) (92.14)   (2.06) 
 [16960]   [15812] 
     
Agricultural Exhibition Hall 89.00 7.7759*** 0.0961 0.2000** 

(39.9716E, 116.473N) (84.83) (30.14) (0.39) (2.32) 
[1.5 km] [15757] [15638] [15638] [14027] 

     
Dongsi 89.29 8.2206*** 0.0338 0.1871** 

(39.9522E, 116.434N) (84.06) (30.51) (0.13) (2.36) 
[5.5 km] [16073] [15946] [15946] [14140] 

     
Olympic Sports Center 85.44 7.4253*** 0.6961*** 0.2452*** 

(40.0031E, 116.407N) (77.18) (28.25) (2.75) (3.12) 
[6.6 km] [14160] [14039] [14039] [12822] 

     
City average 89.08 8.6872*** 0.6212*** 0.1524** 
 (80.13) (32.98) (2.53) (2.54) 
 [16584] [16048] [16048] [14926] 
Notes: Column 2 reports raw (unconditional) differences in means of PM2.5 relative to the records from 
the US Embassy station, while Column 3 reports conditional differences after removing meteorological 
conditions, date characteristics and time-fixed effects. Column 4 reports the 2SLS results, strictly in 
line with our benchmark framework (Table 5) but using the PM2.5 record monitored by specific 
monitoring stations instead of the city average concentration. For comparison, the last three rows 
duplicate baseline results at the city level. t- statistics are listed in parentheses; square brackets report 
the sample size. *p< 0.1, **p< 0.05, ***p< 0.01. 
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Table 8. Daily Records with Regional Fixed Effects 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 Ln(AQI) Ln(AQI) Ln(AQI) Ln(AQI) Ln(PM2.5) Ln(PM2.5) Ln(PM2.5) Ln(PM2.5) 
TCI(MP) 0.0801***    0.0691**    
 (2.86)    (2.14)    
Speed(MP)  -0.0392***    -0.0338**   
  (-2.88)    (-2.14)   
TCI(EP)   0.0595***    0.0512**  
   (2.96)    (2.19)  
Speed(EP)    -0.0291***    -0.0251** 
    (-2.98)    (-2.19) 
Date Controls Y Y Y Y Y Y Y Y 
Meteorological Conditions Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y 
District FE Y Y Y Y Y Y Y Y 
N 4156 4156 4139 4139 4147 4147 4130 4130 
R2 0.522 0.516 0.540 0.544 0.620 0.615 0.628 0.630 

Notes: Meteorological conditions in this table denote all of the meteorological variables in line with our benchmark framework (Table 5) 
but use daily average values. Coefficients of other control variables have expected signs and statistical significance. For brevity, they are  
not reported here. Standard errors are robust to heteroscedasticity. t statistics in parentheses; *p< 0.1, **p< 0.05, ***p< 0.01. 
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Table 9. Results Comparison 

 (1) (2) (3) (4) 
Traffic Control Changes 

in 
Traffic-
induced 

Economic Study Reduced-
form 

Policies TCI AQI (%) Comparison (%) Regression 
Odd-Even -1.1034*** -21.53 [-19.28, -21.74] -0.5454*** 

 (-9.56)  Viard and Fu (2015) (-3.41) 
     

 One -Day-Per-Week -0.4501*** -8.78 [-7.93, -14.81] -0.0526 
 (-15.38)  Viard and Fu (2015) (-0.62) 
     

The Four and Nine Days 0.5437*** 10.61 Insig. 0.0473 
 (5.03)  Sun et al. (2014); Zhong 

(2015) 
(0.75) 

Notes: Column 1 compares the differences in TCI between specific traffic-control days (i.e., odd-even 
days, one-day-per-week days and the four and nine days) and other days, respectively. Column 2 
reflects changes in traffic-induced AQI by multiplying the TCI variation by our IV estimator (i.e., the 
semi-elasticity 0.1951 in Column 4 of Table 5). Column 4 reports the reduced-form estimates that 
directly explore the impact on air quality of the odd-even restriction, the one-day-per-week restriction 
and the four and nine days, respectively. t- statistics in parentheses; *p< 0.1, **p< 0.05, ***p< 0.01. 
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Figure 1. Vehicle Growth and Travel Modes in Beijing 

 
(a) Vehicle growth in Beijing (b) Changes in share of travel modes 

Data source: Beijing Traffic Management Bureau 

 

Figure 2. Air Quality in Beijing: 2000-2014 

 
Data source: Ministry of Environmental Protection of China (http://datacenter.mep.gov.cn/) 

Notes: The Air Quality Index (AQI), introduced in Beijing in 2013, is an index that consists of six 
major air pollutants. Before 2013, air quality was measured by the Air Pollution Index (API), which 
consisted of only three major air pollutants, including SO2, NOX, and Total Suspended Particulates 
(TSP). To examine the uniform time trend of air quality from 2000 to 2014, we specifically changed to 
the new AQI measure in 2013 and 2014 (for the calculation method, see 
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/t20120302_224166.htm), but we still 
denote it as AQI in the graph legends above. 

 

 

 

 

http://datacenter.mep.gov.cn/
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/t20120302_224166.htm
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Figure 3. Diurnal Pattern of AQI and TCI in Beijing: Negative Correlation 
between AQI and TCI 

 
Data source: Hourly records of TCI obtained from Beijing Transportation Research Center. Real-time 
AQI is reported by the Ministry of Environmental Protection of China (http://datacenter.mep.gov.cn/). 

Notes: The graph at the top of the frame displays the hourly AQI trend during our study period (i.e., 
2013-2014). The curve with the solid line represents the mean values of AQI within each hour interval, 
while the 95% confidence band is added as a gray area. The histogram at the bottom of the frame 
displays hourly average TCI among all observations in our dataset. 

Figure 4. The 24-hour Pattern of TCI and AQI on Four and Nine Days and Other 
Weekdays 

 
(a) Hourly Distribution of TCI(b) Hourly Distribution of AQI 

Data source: Hourly records of TCI obtained from the Beijing Transportation Research Center. Real-
time AQI is reported by the Ministry of Environmental Protection of China 
(http://datacenter.mep.gov.cn/). 

Notes: Figure compares the hourly variation of TCI and AQI between the four and nine days and other 
weekdays. The overlapped confidence intervals (CIs) indicate an insignificant difference (at the 95% 
significance level) in TCI (or AQI) between the four and nine days and other weekdays, while the non-
overlapped 95% CIs indicate such difference is statistically significant. 

http://datacenter.mep.gov.cn/
http://datacenter.mep.gov.cn/
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Figure 5. Hourly Regression Results 

 
(a) Marginal impacts of hourly TCI on AQI                (b) Marginal impacts of hourly TCI on PM2.5 
 

 
(c) Marginal impacts of hourly TCI on NO2              (d) Marginal impacts of hourly TCI on CO 

Notes: Figure 5 displays changes in log air pollutants with a one-unit increase in TCI at a particular 
one-hour interval. The bar chart below is the histogram of hourly TCI mean values at different times. 
The solid line and shaded parts above represent the estimated marginal contribution (log-linear IV 
estimator) of hourly subsamples and their relative 95% confidence intervals (CIs). Once the CIs 
(shaded parts) go across the dash line (Y-axis equals zero), the changes in log air pollutants will no 
longer be significantly different from zero at the 95% significance level. 
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Figure 6. Non-linear Relationship between TCI and Air Pollutants 

(a) Relationship between TCI and AQI               (b) Relationship between TCI and PM2.5 

(c) Relationship between TCI and NO2                (d) Relationship between TCI and CO 

Notes: The bar chart below is the TCI density distribution of TCI, while the solid line above displays 
contributions of vehicle traffic to air pollution concentrations as TCI increases, with the shaded 
portions representing 95% confidence intervals (CIs). Once the CIs (shaded parts) go across the dash 
line (Y-axis equals zero), the changes in log air pollutants will no longer be significantly different from 
zero at the 95% significance level. 
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Figure 7. Relationship between TCI and Vehicle Speed 

 
Notes: Figure 7 displays the relationship between TCI and vehicle speed during morning peak (MP) 
and evening peak (EP) hours, using local polynomial smooth plots with 95% confidence intervals (CIs). 
Narrow CIs indicate good performance in fitting the relationship between TCI and vehicle speed. The 
blue and red lines represent the plot line derived from the MP and EP, respectively. The dashed lines 
separately highlight the mean values at MP and EP. 
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Appendix 

Table A1. Summary Statistics for Daily Volume of Public Transport Passengers 
in Beijing, 2013-2014 

Variable Def. (Unit) Mean SD Min Max N 
BPV Bus passenger volume (million) 13.019 1.494 5.810 15.482 730 
SPV Subway passenger volume (million) 9.029 1.538 1.825 11.559 730 
Data sources: Beijing Traffic Management Bureau 2013-2014. 

Notes: We also collected daily records of bus and subway passenger ridership in 2013 and 2014 for the 
analysis. The daily passenger ridership of bus and subway data was from the Beijing Daily Transport 
Operation Monitoring, released by the Transport Operation Control Center of Beijing. 

 

Table A2. Summary Statistics for Daily Records in Six Districts of Beijing 
Variable Def. (Unit) Mean SD Min Max N 
AQI Daily Index 123.2 76.86 4 440.7 4210 
PM2.5 Daily record (μg/m3) 89.63 70.25 3 417.4 4201 
PM10 Daily record (μg/m3) 125.7 78.70 6 567 4189 
NO2 Daily record (μg/m3) 62.80 28.36 3.304 202.4 4035 
CO Daily record (mg/m3) 1.439 1.046 0.179 8.142 4189 
TCI (MP) Morning Peak Index (0-10) 4.023 2.550 0.600 9.400 4326 
TCI (EP) Evening Peak Index (0-10) 5.123 2.636 0.700 9.800 4308 
Speed (MP) Morning Peak Speed (km/hour) 30.95 7.750 16.50 54 4326 
Speed (EP) Morning Peak Speed (km/hour) 26.71 6.150 12.50 47 4308 
Temperature Daily average (Celsius) 13.52 11.08 -9.700 31.80 4380 
Relative humidity Daily average (%) 5.345 1.940 0.900 9.700 4380 
Sea-level pressure Daily average (hPa) 1012 9.903 990 1039 4380 
Solar-radiation Daily total (hours) 6.459 4.126 0 14.10 4380 
Wind speed Daily extreme (m/s) 7.947 3.254 3 20.8 4380 
Wind direction Index (1-16) 8.477 4.553 1 16 4380 
Data sources: The measurements of air pollutants were obtained from China National Environmental 
Monitoring Center, 2013-2014 (See http://www.cnemc.cn/ and http://106.37.208.233:20035/). Daily 
meteorological conditions were downloaded from the China Meteorological Data Sharing Service 
System (see http://cdc.nmic.cn/home.do) and the daily TCI at both morning peak and evening peak are 
provided by the Beijing Traffic Management Bureau for 2013-2014. 

Notes: Table provides air pollutant records from 1/18/2013 to 12/31/2014. Observations consist of 
daily records at six districts of Beijing. 

http://www.cnemc.cn/
http://106.37.208.233:20035/
http://cdc.nmic.cn/home.do
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Table A3. Daily Records with Regional Fixed Effects 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 Ln(NO2) Ln(NO2) Ln(NO2) Ln(NO2) Ln(CO) Ln(CO) Ln(CO) Ln(CO) 
TCI(MP) 0.1054***    0.1099***    
 (2.82)    (4.08)    
Speed(MP)  -0.0510***    -0.0537***   
  (-2.82)    (-4.08)   
TCI(EP)   0.0796***    0.0816***  
   (2.89)    (4.22)  
Speed(EP)    -0.0386***    -0.0400*** 
    (-2.88)    (-4.23) 
Date Controls Y Y Y Y Y Y Y Y 
Meteorological conditions Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 
Month FE Y Y Y Y Y Y Y Y 
District FE Y Y Y Y Y Y Y Y 
N 4032 4032 4016 4016 4137 4137 4120 4120 
R2 0.671 0.663 0.678 0.679 0.624 0.612 0.645 0.653 

Notes: See Table 8. Standard errors are robust to heteroscedasticity. t statistics in parentheses; *p< 0.1, **p< 0.05, ***p< 0.01. 
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Figure A1. Hourly Pattern of Air Pollutants and TCI in Beijing 

 
Data Source and Notes see Figure 3. 

Figure A2. Hourly Distribution of Air Pollutants 

 
Data Source and Notes: see Figure 4. 
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Figure A3. AQI Density 
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(a) Wamshou Nishinomiya          (b) Dongsi                                    (c) Temple of Heaven 
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(d) Agricultural Exhibition Hall   (e) Park Office                              (f) Haidian Wanliu 
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(g) Olympic Sports Center           (h) Gucheng                                 (i) City Average 
Notes: Figure displays the density analysis using air quality data applied in this paper. Figures (a) to (h) 
depict the AQI density for eight individual state-controlled air quality monitoring stations located 
within the Fifth Ring Road in Beijing, while Figure (i) shows the AQI density pattern at a citywide 
average level. Dashed lines highlight the potential cut-off point where AQI equals 100. 
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