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The Economic Impact of Weather Variability on China’s Rice Sector 

Shuai Chen, Xiaoguang Chen, and Jintao Xu 

Abstract 

This paper provides the first county-level analysis of the impacts of weather variability on rice 

yield in China, by compiling a unique panel on irrigated single-season rice and daily weather data. We 

found that temperature and solar radiation had statistically significant impacts on rice yield during the 

vegetative and ripening stages, while the effects of rainfall on yield were not significant. In contrast to 

nearly all previous studies focusing on rice production in tropical/subtropical regions, we discovered 

that higher daily minimum temperature during the vegetative stage increased rice yield in China. 

Consistent with other studies, higher daily maximum temperature during the vegetative and ripening 

stages reduced rice yield in China, while the impacts of solar radiation on rice yield varied across the 

plant’s growth stages. Adaptation of rice production to higher temperatures effectively reduced the 

adverse impacts of weather variability on rice yield. Combined, our results indicate that weather 

variability caused a net economic loss of $25.2 million to $60.7 million to China’s rice sector in the past 

decade, depending on model specifications and econometric estimation strategies. 
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The Economic Impact of Weather Variability on China’s Rice Sector 

Shuai Chen, Xiaoguang Chen, and Jintao Xu 

Introduction 

Most studies assessing the impacts of rising temperature on agriculture have focused on 

the developed world (Lobell and Asner 2003; McCarl et al. 2008; Mendelsohn et al. 1994; 

Olesen and Bindi 2002; Schlenker et al. 2006; Schlenker and Roberts 2009). With a few 

exceptions (Lobell et al. 2011; Welch et al. 2010), there has been little research using high 

quality data to address similar issues in developing countries, which are home to over 70% of the 

world’s poor and depend heavily on agriculture. The objective of this article is to provide 

empirical evidence on the impact of weather variability on rice yield in China, using a unique 

county-level panel on rice yield and weather.  

Rice is the most important food crop in China’s agricultural economy, accounting for 

30% of the total grain area, 50% of the total grain output, and nearly 40% of the nation’s caloric 

intake (Huang and Rozelle 1996; NBS 2000-2009). China is also the world’s largest rice 

producer, accounting for 28% of world rice production in 2012 (Fao 2012). Therefore, how 

weather variations affect China’s rice sector is of critical importance to the welfare of China’s 

domestic population of 1.4 billion and can have profound impacts on rice supply and prices 

worldwide.  

Many studies have evaluated the impacts of temperature and solar radiation on rice yield. 

The predominant tool was agronomic research based on field trials and greenhouse experiments. 

The growth of the rice plant can be divided into three main stages, namely the vegetative stage 

from germination to panicle initiation, the reproductive stage from panicle initiation to flowering, 

and the ripening stage from flowering to mature grain. These agronomic studies found that 

higher daily average temperature (Tave) and decreased solar radiation (global dimming) reduce 

rice yield (Krishnan et al. 2007; Seshu and Cady 1984; Wassmann et al. 2009; Yoshida and 

Parao 1976), with the effects varying across the plant’s three growth stages. Recent studies 
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discovered that rice yield responded differently to daily maximum temperature (Tmax) and daily 

minimum temperature (Tmin), and that the impacts of temperature and solar radiation could 

potentially be confounding (Peng et al. 2004; Welch et al. 2010; Ziska and Manalo 1996). For 

instance, using the data at the International Rice Research Institute farm, Peng et al. (2004) found 

that rice yield responded negatively to rising Tmin, while the effect of Tmax on yield was 

insignificant. In contrast, Welch et al. (2010) analyzed the data from farm-managed fields to 

estimate the effects of temperature and solar radiation on rice yield in tropical/subtropical Asia. 

Similar to Peng et al. (2004), they showed that rice yield was negatively affected by higher Tmin 

but was positively correlated with higher Tmax, while the radiation impacts varied by growth 

stage. Despite these findings, in a review article on the impacts of climate change on rice yield, 

Wassmann et al. (2009) concluded that “research into the effect of high night temperature is not 

understood well and should be prioritized.” 

A few studies have evaluated the impacts of climate change on rice yield in China (Chen 

et al. 2014; Zhang et al. 2010). Using data from 20 experiment stations, Zhang et al. (2010) 

showed that rice yield was positively correlated with temperature. Based on province-level data, 

Chen et al. (2014) found that higher average temperature raised single cropping rice yield, but 

reduced the yield of double cropping rice. Crop simulation models have also been used to assess 

the climate impact on rice yield in China (Yang et al. 2014; Yao et al. 2007). However, 

fundamental aspects of these models have been questioned (Schlenker et al. 2006), because they 

cannot represent real agricultural settings and because they ignore farmers’ contemporaneous 

responses to changing climate conditions. 

This article estimates the relationship between weather variables and rice yield in China, 

using a newly available county-level panel. The dataset includes county-specific rice yield and 

daily weather outcomes that spanned most Chinese counties from 2000 to 2009. Here, we 

focused on single-season rice, which is widely produced across the nation and accounts for about 

50% of the total rice production in China. The weather data include daily Tmax, Tmin, rainfall, and 

solar radiation. This detail enabled us to construct county-specific weather variables across three 

growth stages of rice for all rice-producing counties. We also used estimated coefficients of 

weather variables to quantify the net economic impact of weather variability on China’s rice 

sector over the sample period. 

To conduct the analysis, we developed a fixed-effects spatial error model to estimate the 

link between rice yield and weather variables. The model controlled county fixed effects to 

remove the unobserved factors that are unique to each county and do not vary over time (e.g., 

soil quality and crop production/management practices), and year fixed effects to remove the 
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unobserved factors that are common to all counties in a given year (such as seed variety). We 

also controlled for the potential spatial correlations of the error terms. In addition to weather 

variables, we included socioeconomic variables in some model specifications. These estimation 

strategies are expected to increase the precision of coefficient estimates of weather variables. 

In contrast to nearly all previous studies focusing on rice production in 

tropical/subtropical regions, we found that higher Tmin during the vegetative stage increased rice 

yield in China. Consistent with other studies, higher Tmax during the vegetative and ripening 

stages reduced yield. Although farmers actively undertook steps to adapt rice production to 

higher temperatures, our estimates indicate that the changes in weather conditions caused a net 

economic loss of approximately $25.2-$60.7 million in China’s rice sector during the past 

decade. As the first county-level analysis estimating the relationship between weather and rice 

yield in China, we provide new evidence on the effect of high nighttime temperature on rice 

yield. Our results may also generate important public policy implications for the formation of 

China’s future national and global climate strategies. 

Empirical Model 

The spatial error model developed to estimate the relationship between weather variables 

and rice yield is shown in Equations (1) and (2): 

  

, , , ,r t r t r t r t r tY Z A          (1) 

, , ' ', ,

'

r t r r r t r t

r

W      (2) 

where Yr,t  denotes county-average rice yield in county r and year t. Zr,t  represents weather 

variables, including the means of Tmax and Tmin and sums of solar radiation and rainfall for three 

rice growth stages (a total of twelve weather variables). Other control variables are denoted by 

Ar,t, which includes economic variables (i.e., output-input price ratios that control for the effect 

of the use of inputs on rice yield, such as fertilizer and labor) and farmers’ contemporaneous 

climate adaptation behaviors. We also controlled both county-level fixed effects (represented by 

αr) and year fixed effects (denoted by λt) to remove the unobserved factors unique to each county 

or common to all counties in a given year. εr,t are the error terms that represent the impacts of 

factors other than weather, economic, and adaptation variables on rice yield.   is the parameter 

vector that gives the responses of rice yield to weather variations.   
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In addition to weather variables, to capture the effects of the change in rice price and 

prices of inputs used for rice production on yield, we included output-input price ratios as 

additional explanatory variables in some model specifications (as in Welch et al. 2010). We used 

lagged rice price in year t-1 as a proxy for expected rice price in year t (Braulke 1982; Nerlove 

1956). Because of the limited data on other input prices, we included fertilizer price index and 

wage as input prices and constructed rice-fertilizer and rice-labor price ratios. Because other 

input prices (such as chemicals and machinery) are unlikely to be highly correlated with weather, 

the exclusion of these variables is not expected to have a significant impact on coefficient 

estimates of  . Here, the use of province-level price data is reasonable, because Chinese farmers 

usually operate small farms
1
 and thus are price takers in rice, labor, and fertilizer markets. 

However, the two price ratios may be endogenous, as argued by Roberts and Schlenker (2013). 

Drawing on their work, we used weather variables in the previous year as instruments to address 

this potential endogeneity issue. As shown in the results section, regression results were only 

marginally different if the two price ratios were considered to be exogenous.  

Most rice production in China is irrigated. However, farmers can still take adaptation 

actions, such as adjusting crop production practices, investing in new technology to save 

irrigated water, and increasing irrigation water usage in warmer seasons, to mitigate the adverse 

effects of weather change on yield (Howden et al. 2007). These adaptation behaviors can affect 

rice yield, and the need for these behaviors is largely dependent on local weather variations. 

Therefore, omitting these adaptation variables from a regression model may cause biased 

estimates of the true weather effects. With the lack of other relevant information, we used the 

ratio of irrigated acres to total planted acres of all crops in a county as a proxy to control for the 

possibility of farmers’ contemporaneous adaptation behaviors. This variable is also potentially 

endogenous because it reflects farmers’ responses to changes in weather conditions. To address 

this issue, we used the irrigation ratio in the previous year to serve as the instrument for farmers’ 

irrigation behavior in the current year. Past irrigation behavior is a good instrument because it 

affects farmers’ irrigation behaviors in subsequent periods due to the large investment made in 

irrigation infrastructure, such as vertical wells and irrigation canals. But it has zero covariance 

with unobserved factors affecting rice yield in the current period. Unobserved factors might stem 

from the omission of input use, unanticipated pest problems, and regional-specific agricultural 

                                                 
1
 China's per capita farmland is about 0.13 hectare (ha), which is 40% less than the global average; see 

http://faostat.fao.org/site/377/default.aspx#ancor. 

http://faostat.fao.org/site/377/default.aspx#ancor
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production practices. With the use of the instrumental variable, we lost the observations in 2000. 

To make results comparable across different model specifications, we used the data consistently 

for years 2001-2009 for all model specifications. 

As shown in Equation (2), we allowed the error terms εr,t to be spatially correlated across 

counties. 
,r t are the error terms that are independently normally distributed with

,[ ] 0r tE   and

2

,var[ ]r t  , ρ is the parameter of spatial correlation, and 
, 'r rW is a pre-specified spatial 

weighting matrix that describes the spatial dependence of counties with their neighbors. We used 

three different spatial weighting matrices to examine the robustness of our coefficient estimates 

of weather variables. We first used a spatial contiguity matrix because crop production in a 

county is more likely to be influenced by its neighboring counties that share the same boundary. 

Under the spatial contiguity matrix, the (r, r’) element of the spatial matrix is unity if counties r 

and r’ share a common boundary, and 0 otherwise. The contiguity matrix is then normalized so 

that the elements in each row sum to unity. However, the spatial contiguity matrix allows the 

possibility that counties share only a single boundary point (such as a shared corner point on a 

grid of counties). Thus, we considered two alternative distance weighting matrices that weigh the 

six and four nearest counties relative to county r, respectively, according to their physical 

distance, and assign zero weights to other counties. The relative weights in each of the two 

distance weighting matrices are determined based on their distances to the centroid of the county 

r. All spatial panel models controlled for spatial fixed effects and were estimated using 

maximum likelihood (Anselin 1988).  

Data 

County-specific total rice production and planted acres were obtained from the National 

Bureau of Statistics of China (NBS) for years 2000-2009. From the same source, we obtained 

total planted and irrigated acres of all crops for all rice-producing counties in China. Rice yield 

was computed as the total rice production in a county divided by the total rice-planted acres in 

that county. Several rice cropping systems are practiced in China, including single-season rice, 

double cropped rice (a combination of early and late rice production technology), and multiple 

cropped rice. The dataset only reports total rice production and total rice planted acres for rice-

producing counties, and does not contain details on yields for early rice and late rice in regions 

with double or multiple rice cropping systems. Therefore, to accurately match yield data with our 

weather data, we selected counties with single-season rice production only. This gave us 6,939 

observations with 771 counties. The sample represented about 50% of the total rice production in 

China. As shown in Table 1, rice yield varied substantially in the sample, ranging between 
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1,842-14,240 kg
.
ha

-1
 with an average of 7,138 kg

.
ha

-1
. Rice growing seasons in different areas 

were obtained from the Department of Agriculture of China.
2
  

Weather data were obtained from the China Meteorological Data Sharing Service System 

(CMDSSS), which records daily Tmin, Tmax, Tave, rainfall, and solar radiation for 820 weather 

stations in China. The CMDSSS measures solar radiation using the number of hours in each day 

during which the sunshine is above 200 megawatts/cm
2

. The dataset also contains exact 

coordinates of each weather station, enabling them to be merged with our county-level yield 

data. For counties with several weather stations, we constructed weather variables by taking a 

simple average of these weather variables across these stations. We imputed the climatic 

information from the contiguous counties for counties without a weather station. 

Trends for Tmin, Tmax, Tave, and solar radiation during the three rice-growth stages are 

shown in Figure 1. On average, the observed Tmin and Tmax increased by 0.217°C and 0.094°C per 

decade, respectively, during the period 1950-2010. Average daily solar radiation decreased by 

0.161 hours per decade over the same period, a phenomenon known as global dimming (Huang 

et al. 2006; Ramanathan et al. 2005). 

 We obtained province-level economic data on rice price and fertilizer price indices from 

the China Yearbook of Agricultural Price Surveys (NBS 2012). County-specific labor costs are 

not available. Labor costs were measured using average wage for farm labor and obtained from 

the NBS.
3
 

Empirical Results 

Data Correlations 

Before presenting our regression results, we first examined the presence of spatial 

correlations of the error terms in the regression model by performing Moran’s I test (Anselin 

1988) for each of our three spatial weighting matrices. We also supplemented Moran’s I test with 

three alternative tests, namely the Lagrange Multiplier (LM) ERR test, the Likelihood Ratio (LR) 

test and the Wald test. We conducted these tests using the same set of explanatory variables as in 

the estimation of the yield equations, including weather, economic, and adaptation variables. As 

                                                 
2
 See: http://zzys.agri.gov.cn/nongqingxm.aspx 

3 
http://data.stats.gov.cn/workspace/index?m=fsnd. 

http://data.stats.gov.cn/workspace/index?m=fsnd
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shown in Table 2, these test results indicate that spatial correlations of the error terms in the 

regression model are quite large. The parameters of spatial correlations are 0.69 under the 

contiguity matrix and the distance matrix that weights the six nearest neighbors, and become 

smaller (0.62) under the distance matrix that weights the four nearest neighbors. These test 

statistics indicate that omitting the spatial correlations can lead to a significant overestimate of 

the true t-statistics (Schlenker et al. 2006). In the baseline analysis presented below, we 

employed the contiguity matrix as a spatial weighting matrix. We examined the robustness of our 

results using other spatial weighting matrices. 

Table 3 presents the correlations of weather variables. We found that: (i) Tmin and solar 

radiation were moderately (and positively) correlated in the vegetative and reproductive stages, 

but the correlation of the two variables in the ripening stage was not statistically significant; (ii) 

Tmin and solar radiation were positively correlated with Tmax during the three growth stages; and 

(iii) Tmax, Tmin and solar radiation were negatively correlated with rainfall.  

Regression Results 

We conducted the spatial error analysis using five different model specifications. In 

Model (1), we included the three Tmin variables as the only explanatory variables to examine the 

variations in rice yield during the sample period. In Model (2), we added the three solar radiation 

variables as additional explanatory variables. In Model (3), we included the Tmax variables to 

examine whether daily maximum temperature played a significant role in influencing county-

average rice yield. In Model (4), we incorporated rainfall. Lastly, in Model (5), we added the two 

price ratios and the irrigation ratio and examined whether the inclusion of these variables affects 

our coefficient estimates of weather variables. All model specifications included time-invariant 

county fixed effects to control for the possibility of unobserved characteristics within each 

county and year fixed effects to remove the unobserved factors common to all counties in a given 

year. 

Table 4 shows parameter estimates of weather variables for different model 

specifications. We found that the responses of rice yield to temperature and radiation variables 

varied by growth stage. Tmin, Tmax and radiation had statistically significant impacts on rice yield 

during the vegetative stage. Tmax and radiation also had significant impacts on rice yield during 

the ripening stage, with the exception of radiation in Model (2), where Tmin and radiation are the 

only explanatory variables. Rice yield was not significantly affected by the temperature and 

radiation variables during the reproductive stage in any of the model specifications considered 

here.  
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In contrast to nearly all previous studies focusing on rice production in tropical and 

subtropical regions (Mohammed and Tarpley 2009b; Peng et al. 2004; Seshu and Cady 1984; 

Welch et al. 2010; Yoshida and Parao 1976; Ziska and Manalo 1996), we found that higher Tmin 

during the vegetative stage in China had a positive impact on rice yield. For instance, in Model 

(5) with weather, economic and adaption variables, a 1°C increase in Tmin during the vegetative 

stage increased rice yield by 133.3 kg
.
ha

-1
. Existing literature emphasizes that increased Tmin can 

damage rice yield because it can increase respiration losses during the vegetative stage 

(Mohammed and Tarpley 2009b; Peng et al. 2004), cause low pollen viability, and hasten crop 

maturity during the ripening stage (Mohammed and Tarpley 2009a). Agronomic studies also  

suggest that if Tmin is above 25°C during the vegetative stage, it can lead to significant damage to 

rice growth by reducing plant height, tiller number, and total dry weight (Yoshida et al. 1981). 

However, less than 1% of the observations of Tmin during the vegetative stage in our sample are 

greater than 25°C. We also found that average Tmin during the three rice-growth stages in our 

sample were 6.5-9.4°C, lower than that in tropical and subtropical Asia (see Table S2 in Welch et 

al. 2010). Therefore, the difference in the data analyzed between this article and the previous 

studies may explain the differences in the estimated effects of Tmin on rice yield. Greenhouse 

experiments for rice showed a positive impact of elevated Tmin on rice yield during the vegetative 

stage (Kanno et al. 2009).  

Higher Tmax had negative impacts on rice yield during the vegetative and ripening phases, 

which is in agreement with well-established previous assessments (Lobell and Field 2007; 

Wassmann et al. 2009). Higher Tmax hurts rice growth through altered pollen germination and 

spikelet fertility, increased respiration rates, and decreased membrane thermal stability 

(Mohammed and Tarpley 2009b; Mohammed and Tarpley 2009a; Wassmann et al. 2009).   

Coefficient estimates of other weather and socioeconomic variables have expected signs. 

We found that the impacts of radiation on yield varied by growth stage. Estimated effect of 

radiation on rice yield is negative during the vegetative stage and is positive during the ripening 

stage, which is similar to the findings in other regions (for example, see Welch et al. 2010). 

Parameter estimates of rice-fertilizer and rice-labor price ratios are positive, but not statistically 

significant (see results in last column of Table 4). To control for the effect of possible adaptation 

to changes in weather conditions on rice yield, in Model (5) we added the ratio of irrigated acres 

to total planted acres in a county. When this adaptation variable is included, the results show that 

adaptation had a positive effect on rice yield, suggesting that adaptation of rice production 

effectively reduced the negative effects of higher temperatures on yield. In light of the fact that 
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most rice production in China is irrigated, it is not surprising to see that rainfall had an 

insignificant impact on rice yield across the model specifications considered here.  

We found that the addition of radiation in Model (2) only modestly affected parameter 

estimates of Tmin as compared to Model (1), which is not surprising given the small correlation 

between Tmin and radiation. Because Tmin and radiation were highly correlated with Tmax, the 

inclusion of Tmax in Model (3) doubled the parameter estimate of Tmin during the vegetative phase 

as compared to the parameter estimates in Models (1)-(2), while reducing the parameter estimate 

of solar radiation during the vegetative stage by 35%. The addition of Tmax also made the effect 

of radiation on yield insignificant during the reproductive stage, and significant (p<0.05) during 

the ripening stage. Therefore, our results confirm the necessity of jointly analyzing the impacts 

of Tmax, Tmin and solar radiation on rice yield, and excluding Tmax can lead to biased parameter 

estimates of Tmin and radiation and their statistical significance. Parameter estimates of the 

temperature and radiation variables changed modestly with the inclusion of rainfall and price and 

irrigation ratios, which shows the robustness of our results. 

Marginal Effects 

Table 4 shows how rice yield changed when the temperature and radiation variables 

increased by an additional unit, holding all other variables in the regression constant. However, 

the weather variables have different units and exhibited different patterns of change over time, 

which prevented effective comparison of the marginal effects of the weather variables. To 

overcome this difficulty, we computed the marginal effects by multiplying parameter estimates 

of the weather variables, whose parameter estimates are statistically significant, by the standard 

deviations (SDs) of the corresponding weather variables. As shown in Table 5, the two largest 

marginal effects per SD were for Tmax and Tmin during the vegetative stage (-54.0 kg·ha
−1

 and 

53.9 kg·ha
−1

), respectively, followed by Tmax during the ripening stage (-38.5 kg·ha
−1

). The 

marginal effects per SD of radiation during the vegetative and ripening stages were opposite, -

32.3 kg·ha
−1 

and 33.1 kg·ha
−1

, respectively, and the absolute values of their marginal affects 

were smaller than those of the temperature variables. 

Sensitivity Analysis 

The results presented above regarding the impacts of weather variability on rice yield 

make intuitive sense. In this section, we examine how robust they are across different spatial 

weighting matrices, econometric estimation strategies and variables. Specifically, in Scenarios 

(1)-(2), we used two distance matrices that assign weights to the six and four nearest neighboring 
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counties, respectively, and zero to other counties, as our spatial weighting matrices. In Scenario 

(3), we replicated the above analysis without using instrumental variables to address the potential 

endogeneity of the two price ratios and irrigation ratio, and assumed that they were exogenous. 

In Scenarios (1)-(3), we used the same set of explanatory variables as in Model (5) in the 

baseline analysis. Lastly, in Scenario (4), we used average temperature (Tave) instead of Tmin and 

Tmax as temperature variables to examine the temperature effects on rice yield. Results are 

presented in Table 6. 

In Scenarios (1)-(2), signs, statistical significance and magnitudes of parameter estimates 

of weather variables are only slightly different from the baseline estimates, despite the 

considerable difference in the spatial weighting matrices used. That indicates that our results are 

generally insensitive to the chosen spatial weighting matrix. In Scenario (3), with endogenous 

price and irrigation ratios, we found that estimated coefficients of the weather variables changed 

marginally as compared to the baseline estimates. The parameter estimate of the rice-fertilizer 

price ratio now is positive and statistically significant, indicating that the increase in fertilizer 

prices might have resulted in reduced use of fertilizer and might have had detrimental effects on 

county-average rice yield. The parameter estimate of the rice-labor price ratio is positive, but 

statistically insignificant. In Scenario (4), we used daily Tave as temperature variables rather than 

Tmin and Tmax. Consistent with the previous studies (Welch et al. 2010), the impacts of Tave on 

rice yield were not statistically significant for rice’s three growth stages. 

Economic Impact of Weather Variability on China’s Rice Sector 

Estimated parameters of the weather variables were used to investigate the net economic 

impact of weather variability on China’s rice sector. We first used these coefficient estimates to 

measure the change ( t ) in rice yields for years 2001-2009 that have resulted from the changes 

in weather conditions relative to year 2000: 

 

2000( | , ) ( | , )t t t tE Y Z A E Y Z A    (3) 

where 2000( | , )tE Y Z A denotes the expected rice yield with 2000 levels of weather outcomes and 

socioeconomic variables in year t= 2001-2009, and ( | , )t tE Y Z A represents the expected rice 

yield with all variables in year t. In other words, t  measures the change in rice yield because of 

weather variability. Using Equation (1), we can rewrite (3) as: 
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2000( )t tZ Z    (4) 

where   is the coefficient vector of the relationship between weather and rice yield. Replacing 

with its estimated coefficients provides an estimate of 
t .  

We then multiplied the yield change in each county by county-level rice-planted acres in 

2009, summed over all rice-producing counties and all years (from 2001-2009), to get a rough 

estimate of the change in total rice production in China in the past decade due to weather 

variations. We multiplied the change in total rice production by its market price in 2009 to get an 

estimate of the net economic impact of weather variability on China’s rice sector. 

As shown in Figure 2, the most noticeable result is that increased Tmin had a positive 

economic impact, whereas higher Tmax had a negative economic impact. Declining radiation had 

a positive impact during the vegetative stage, while the effect was negative during the ripening 

stage. The sum of the absolute values of the positive impact of Tmin and radiation during the 

vegetative stage was smaller than the sum of the absolute values of the negative impact of Tmax 

and radiation during the ripening stage. Combined, these results indicate that weather variability 

resulted in a net economic loss of approximately $38.4 million in China’s rice sector in the past 

decade. The signs and magnitudes of the estimated economic impact were robust across the 

scenarios considered in the sensitivity analysis, ranging between $25.2 million and $60.7 million. 

Conclusions 

This article is the first county-level analysis of the impacts of weather variability on rice 

yield in China. Using a unique county-level panel on rice yield and daily weather data in China 

over multiple years, we investigated the impacts of weather variability on rice yield, while 

controlling for unobserved factors that varied across counties over time and the potential spatial 

correlations of these unobserved factors. Using estimated coefficients of weather variables, we 

also estimated the net economic impact of weather variability on China’s rice sector. 

The most surprising finding is that Tmin had a large and positive impact on rice yield 

during the vegetative stage. The difference in the estimated effects of Tmin on rice yield between 

this article and the previous studies focusing on rice production in tropical/subtropical regions is 

primarily driven by differences in the data analyzed, particularly by the difference between 

China and other countries in the average minimum temperatures. Our finding of a negative 

impact on rice yield of higher Tmax during the vegetative and ripening stages, a negative impact 
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of increased radiation during the vegetative stage, and a positive impact of increased radiation 

during the ripening stage are consistent with the existing literature. 

Given the large correlation between Tmax and Tmin in our data, our results confirmed the 

necessity to jointly analyze the impacts of Tmax and Tmin. We found that excluding Tmax caused 

biased parameter estimates of Tmin and radiation and their statistical significance. The exclusion 

of Tmax in the regression analysis can even lead to directional change in the assessment of the 

economic impact of weather variability on China’s rice sector (see Figure 3).  

Our finding of a positive impact of increased proportion of land under irrigation provided 

the empirical evidence that adaptation of rice production to changing weather conditions 

effectively reduced the negative impacts of higher temperatures on rice yield. Omitting this 

adaptation variable in the regression analysis can overestimate the net economic impact of 

weather variability by $22 million (see Figure 3). There are many other possible adaptation 

actions that rice farmers can take, such as changing the locations or seasons in which rice is 

grown and adjusting production practices (Howden et al. 2007). The lack of relevant information 

on these adaptation behaviors constrained us from accounting for their impacts on rice yield.  

Three caveats apply. First, our parameter estimates were based on single-season rice in 

China. Chen et al. (2014) found that yield responses of double- and multi-cropped rice to 

weather variables are different from those of single-season rice. Therefore, caution should be 

made when using the results presented in this article to explain the responses of double- and 

multi-cropped rice to weather shocks. Second, our dataset covered observations for the past 

decade only, yet our results are remarkably significant and robust. With a longer time period of 

observations, the net economic cost because of weather variability could be even larger. Third, 

our analysis focused on the impacts of the changes in temperature, precipitation, and radiation, 

but did not consider the impact of CO2 fertilization on crop yields. Laboratory studies have found 

that higher CO2 fertilization may offset yield reductions due to warmer climate (Long et al. 

2006). 
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Tables and Figures 

Table 1. Summary Statistics: Means (SDs) of Rice Yield,  
Temperature, Rainfall, and Solar Radiation  

Variable Rice-growth stage Mean SD Min Max 

Yield (kg
.
ha

-1
)  7,138.9 1,480.2 1,842.1 14,240.0 

Tmin (°C) Vegetative 15.2 4.0 0.7 26.2 

 Reproductive 20.7 3.0 1.7 27.3 

 Ripening 16.4 3.8 -2.1 25.4 

Tmax (°C) Vegetative 25.3 3.4 9.2 34.3 

 Reproductive 29.4 2.9 14.7 37.3 

 Ripening 25.8 2.8 11.9 35.4 

Tave (°C) Vegetative 19.8 3.6 5.0 29.2 

 Reproductive 24.5 2.8 9.8 31.7 

 Ripening 20.4 3.0 4.9 29.6 

Radiation (hours) Vegetative 5.9 1.9 1.8 11.4 

 Reproductive 5.8 1.9 0.8 12.0 

 Ripening 5.4 2.0 0.8 10.4 

Rainfall (cm) Vegetative 43.2 20.4 0.2 135.9 

 Reproductive 18.4 12.3 0.0 96.6 

 Ripening 18.3 13.2 0.0 98.7 

Note: Numbers are based on single-season rice growing counties in China for years 2001-2009. Means for Tmin, Tmax, 

Tave, and sums for radiation and rainfall. Number of observations = 6939. 

 

Table 2. Tests for the Presence of Spatial Correlations of the  
Error Terms of the Spatial Error Model 

Spatial weighting matrix Contiguity matrix 
Distance 

matrix(six)  

Distance 

matrix(four) 

Moran-I  N(0,1) 18.62 19.75 18.28 

LM-ERR        306.91 337.95 300.51 

LRatio         250.21 252.24 257.47 

Walds         4076.55 2357.80 3429.14 

Parameter of spatial correlation  0.69 0.69 0.62 

Note: We used three spatial weighting matrices to examine the sensitivity of our results to proposed weighting 

matrices. Under the spatial contiguity matrix, the (r, r’) element of the matrix is unity if counties r and r’ share a 

common boundary, and 0 otherwise. The matrix is then normalized so that the elements in each row sum to unity. 

Distance matrices are inverse distance weighting matrices that weight the six and four nearest neighbors, 

respectively, according to their physical distance, and assign zero to other counties. The distance matrices are then 

normalized to have row sums of unity. We examined the presence of the spatial correlations of the error terms by 

performing Moran’s I test, the Lagrange Multiplier (LM) ERR test, the Likelihood Ratio (LRatio) test and the Wald 

test. 
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Table 3. Correlations among Weather Variables by Rice Growth Stage 

Phase Variable Tmin Tmax Radiation 

Vegetative Tmax 0.5950* - - 

 Radiation 0.1232* 0.4984* - 

 Rainfall -0.1165* -0.3300* -0.2819* 

Reproductive Tmax 0.5172* - - 

 Radiation 0.0806* 0.6886* - 

 Rainfall -0.1298* -0.4875* -0.4222* 

Ripening Tmax 0.5096* - - 

 Radiation -0.0277 0.5783* - 

 Rainfall -0.1016* -0.4221* -0.2842* 

Note: *p<0.05. 
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Table 4. Regression Results: Impacts of Weather, Economic and Adaptation Variables on 
Rice Yield (kg.ha-1) 

Variables Model (1): 

Tmin only 

Model (2):  

add 

radiation 

Model 

(3):  

add Tmax 

Model (4): add 

rainfall 

Model (5):  

add economic and 

adaptation variables 

Tmin: vegetative 55.95
**

 65.85
**

 134.68
***

 136.29
***

 133.30
***

 

 (2.15) (2.51) (4.03) (4.07) (3.95) 

Tmin: reproductive -0.13 -4.38 -13.53 -13.88 -6.94 

 (-0.01) (-0.25) (-0.62) (-0.63) (-0.29) 

Tmin: ripening -3.73 -15.17 1.00 4.27 9.62 

 (-0.20) (-0.81) (0.04) (0.18) (0.38) 

Radiation: vegetative  -72.65
***

 -46.96
**

 -49.65
**

 -55.24
***

 

  (-3.99) (-2.23) (-2.33) (-2.57) 

Radiation: 

reproductive 

 17.38
*
 4.96 4.75 10.16 

  (1.88) (0.36) (0.34) (0.72) 

Radiation: ripening  19.29 42.21
**

 43.04
**

 42.10
**

 

  (1.44) (2.27) (2.31) (2.22) 

Tmax: vegetative   -80.76
***

 -86.09
***

 -81.23
***

 

   (-3.36) (-3.53) (-3.29) 

Tmax: reproductive   9.66 9.72 -5.34 

   (0.49) (0.48) (-0.21) 

Tmax: ripening   -48.41
**

 -54.92
**

 -47.97
**

 

   (-2.32) (-2.48) (-1.96) 

Rainfall: vegetative    -1.12 -1.27 

    (-1.26) (-1.38) 

Rainfall: reproductive    0.20 0.50 

    (0.15) (0.36) 

Rainfall: ripening    -1.12 -0.98 

    (-0.85) (-0.73) 

Price ratio: 

rice/fertilizer 

    996.57 

     (0.35)
 
 

Price ratio: rice/wage     2561.47 

     (0.58) 

Irrigation ratio     474.25
***

 

    (5.44) 

Parameter of spatial 

correlation 

0.3869 0.3849 0.3769 0.3739 0.3819 

N 6939 6939 6939 6939 6939 

R
2
 0.8025 0.8034 0.8046 0.8048 0.8064 

Note: All model specifications considered the spatial correlations of the error terms, and included fixed effects for 

counties and years in addition to the variables shown above. Units for explanatory variables: °C for Tmin and Tmax, 

hours for radiation, and cm for rainfall. Asymptotic t-statistics are shown in parentheses.  

*
 p < 0.1,  

**
 p < 0.05,  

***
 p < 0.01. 
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Table 5. Marginal Effects of Weather Variables Expressed per SD: Regression Model that 
Included Weather, Economic and Adaption Variables 

Variable Growth phase SD based on 

residual variation 

Marginal effect 

(kg·ha
−1

 per SD) 

Tmin Vegetative 0.404 °C 53.854 

Radiation Vegetative 0.585 hour -32.328 

 Ripening 0.787 hour 33.149 

Tmax Vegetative 0.666 °C -54.058 

 Ripening 0.802 °C -38.472 

Note: Marginal effects are shown only for weather variables whose parameter estimates are statistically significant 

(see Model 5 in Table 4) and were calculated by multiplying parameter estimates by the SDs of the corresponding 

weather variables. SDs refer to residual variation after removing variation explained by fixed effects for counties 

and years. 

Table 6. Sensitivity Analysis: Impacts of Weather, Economic and Adaptation Variables on 
Rice Yield (kg.ha-1) 

 
Model 5 in 

Table 4 

Model 5 

with 

Distance 

matrix(six) 

Model 5 

with 

Distance 

matrix(four) 

Model (5) with 

endogenous 

socioeconomic  

variables 

Model (5) 

using Tave as 

temperature 

variables 

Tmin: vegetative 133.30
***

 138.97
***

 138.85
***

 127.91
***

  

 (3.95) (4.03) (4.21) (3.84)  

Tmin: reproductive -6.94 -10.62 -12.75 -6.71  

 (-0.29) (-0.43) (-0.55) (-0.31)  

Tmin: ripening 9.62 16.88 21.98 1.61  

 (0.38) (0.64) (0.88) (0.07)  

Radiation: vegetative -55.24
***

 -56.45
***

 -56.48
***

 -50.38
***

 -84.09
***

 

 (-2.57) (-2.59) (-2.66) (-2.37) (-4.18) 

Radiation: reproductive 10.16 8.07 6.47 4.55 24.25
**

 

 (0.72) (0.56) (0.46) (0.33) (2.04) 

Radiation: ripening 42.10
**

 38.94
**

 43.39
**

 45.21
**

 28.62
*
 

 (2.22) (2.02) (2.33) (2.43) (1.79) 

Tmax: vegetative -81.23
***

 -80.10
***

 -86.33
***

 -101.07
***

  

 (-3.29) (-3.16) (-3.59) (-4.07)  

Tmax: reproductive -5.34 2.23 8.75 9.58  

 (-0.21) (0.09) (0.35) (0.47)  

Tmax: ripening -47.97
**

 -44.93
*
 -55.22

**
 -52.22

**
  

 (-1.96) (-1.79) (-2.30) (-2.37)  

Rainfall: vegetative -1.27 -1.16 -1.64
*
 -1.20 -0.67 

 (-1.38) (-1.24) (-1.81) (-1.35) (-0.73) 

Rainfall: reproductive 0.50 0.87 0.89 0.51 0.46 

 (0.36) (0.62) (0.66) (0.37) (0.34) 

Rainfall: ripening -0.98 -0.86 -1.21 -0.99 -0.15 

 (-0.73) (-0.62) (-0.92) (-0.75) (-0.12) 

Price ratio: rice/fertilizer 996.57 691.57 175.78 502.97
*
 595.61 

 (0.35)
 
 (0.24)

 
 (0.06)

 
 (1.72)

 
 (0.17) 

Price ratio: rice/wage 2561.47 2794.78 1043.05 269.88 2765.78 
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 (0.58) (0.62) (0.25) (0.95) (0.62) 

Irrigation ratio 474.25
***

 467.19
***

 456.32
***

 163.53
***

 472.77
***

 

(5.44) (5.37) (5.21) (3.01) (5.42) 

Tave: vegetative     15.93 

     (0.62) 

Tave: reproductive     -12.48 

     (-0.61) 

Tave: ripening     -34.29 

     (-1.49) 

Parameter of spatial 

correlation 

0.3819 0.4059 0.3179 0.3669 0.3819 

R
2
 0.8064 0.8053 0.8055 0.8064 0.8041 

Note: We considered four scenarios in sensitivity analysis. In Scenarios (1) and (2), we used distance matrices as the 

spatial weighting matrices in the spatial error analysis. In Scenario (3), we did not use instrumental variables to address 

the endogeneity issue of the economic and climate adaptation variables. Scenario (4) included Tave (average 

temperature) instead of Tmin and Tmax as temperature variables. All model specifications considered the spatial 

correlations of the error terms, and included fixed effects for counties and years in addition to the variables shown 

above. Units for explanatory variables: °C for Tmin, Tmax and Tave, hours for solar radiation, and cm for rainfall. 

Asymptotic t-statistics are shown in parentheses. Number of observations = 6939.  
*
 p < 0.1,  

**
 p < 0.05,  

***
 p < 0.01. 
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Figure 1. Yearly Temperature and Solar Radiation by Rice-growth  
Stage in China, 1950-2010 
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Figure 2. Economic Impacts of Temperature and Radiation on China’s Rice Sector Due to 
Weather Variability under Alternative Scenarios ($ million) 

 

 

Note: To compute the economic impact on China’s rice sector resulting from the changes in weather conditions, we 

first calculated the change in rice yield for years 2001-2009 if weather conditions were maintained at the 2000 

levels. We then multiplied the rice yield change by county-specific planted acres in 2009 to estimate county-level 

production change, and summed across all counties and all years in the sample to get the total rice production loss. 

We multiplied the total rice production loss by its price in 2009 to obtain the net economic loss due to weather 

variability. National average rice price in China was RMB 2.1 per kg. The average exchange rate assumed here is 

RMB 6.8 per US$. Different colors represent the economic impacts of different weather variables. Bars show 95% 

confidence bands. 
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Figure 3. Economic Impacts of Weather Variability on China’s Rice Sector under 
Alternative Model Specifications ($ million) 

 

Note: Model 1 included Tmin only. Model 2 added radiation. Model 3 added Tmax. Model 4 added rainfall. Model 5 

added economic and adaptation variables. Bars show 95% confidence bands. 
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