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Abstract Many environmental externalities occur with time lags that can range from a
few days to several centuries in length, and many of these externalities are also subject
to uncertainty. In this paper, we examine the key features of an optimal policy to manage
environmental externalities that are both lagged and stochastic.Wedevelop a two-period, two-
polluter model and obtain closed-form solutions for optimal emissions levels under different
combinations of damage functions and stochastic processes. These solutions show that it is
not obvious whether greater control should be exerted on polluters that generate externalities
with longer lags or on polluters that generate externalities with shorter lags. We find that the
optimal ranking of polluters with respect to the length of the time lag associated with their
externality will depend on (a) the discount rate, (b) conditional expectations of future states
of the polluted resource, (c) persistence of the pollutant, and (d) initial conditions.

Keywords Environmental externalities · Time lags · Uncertainty · Persistence

JEL Classification H23 · Q5 · D9 · Q2

1 Introduction

Many environmental externalities occur with time lags that can range from a few days to
several centuries in length. For example, epidemiological studies have identified time lags
between exposure to particulate air pollution and respiratory and cardiovascular deaths (Braga
et al. 2001; Schwartz 2000). Likewise, climate change studies predict that even if greenhouse
gas concentrations in the atmosphere were to stabilize today, further global warming and sea
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level rise are likely to occur until at least the year 2400 (Meehl et al. 2005; Solomon et al. 2009;
Wigley 2005). Time lags have also been identified in the production of environmental benefits
from pollution abatement. For example, several studies warn that improvements in water
quality and ecosystem health from the restoration of streams and rivers may take decades
or even centuries to materialize due to delays inherent to hydrological and biogeochemical
processes (Hamilton 2012; Meals et al. 2010). However, despite their prevalence, time lags
in externalities are rarely addressed in the economics literature and are often not taken into
account in the design of environmental policy.

Many of these natural systems that exhibit time lags are also subject to uncertainty (Allen
et al. 2000; Beck 1987; Fox 1984). Air and water pollution are inherently stochastic, with fac-
tors such as weather playing a causal role in these processes. Uncertainty may also stem from
the inability of regulators to monitor these natural systems on a continuous and widespread
basis at reasonable cost. While a large number of studies have explored how environmen-
tal policies can optimally address uncertainty, much of this literature has focused on the
asymmetry between price and quantity instruments in the presence of uncertainty concern-
ing the costs of pollution control (Weitzman 1974), the implications of irreversibilities in
environmental damage (Pindyck 2002), and the role of regime shifts in defining optimal
precautionary behavior (Brozović and Schlenker 2011; Zemel 2012). These studies do not
explicitly address how time lags affect the optimal management of these stochastic natural
systems.

In this paper, we examine the key features of an optimal policy to manage environmental
externalities that are both lagged and stochastic. We develop a two-period, two-polluter
model that allows us to obtain closed-form solutions for optimal emissions levels under
different combinations of environmental damage functions and stochastic processes. Despite
the relative simplicity of the model, we find that the simultaneous presence of lags and
uncertainty leads to an optimal policy with differentiated regulation of polluters defined by
a complex interaction between the effects of discounting, persistence of the pollutant, and
initial conditions. In addition, the closed-form solutions yield analytical results regarding the
relationship between optimal emissions levels and key parameters, thus helping us identify the
specificmechanisms throughwhich lags anduncertainty affect optimal pollution policies. The
fact that such an elaborate optimal emissions policy arises from our two-period, two-polluter
model suggests that policymakers should exercise care in regulating lagged environmental
externalities in the real world, which are likely to be more complicated.

Our analysis makes two main contributions to the literature on the management of envi-
ronmental externalities. First, we develop a model and derive solutions for the optimal
management of environmental externalities when heterogeneous time lags and uncertainty
are simultaneously present in a setting with multiple polluters. To our knowledge, no previ-
ous studies have described how lags and uncertainty affect the tradeoff between emissions
by different polluters in achieving a socially optimal level of aggregate environmental dam-
age. We thus show that accounting for these common characteristics of externalities may be
important from a policy perspective, while the derivation of closed-form solutions for the
optimal emissions policy allows us to understand how policies would need to be adjusted in
response to changes in key parameters such as the discount rate, initial conditions, and the
degree of uncertainty associated with the stochastic process.

Our second contribution is to provide new results that contradict previous theoretical
findings in the environmental regulation literature. While previous studies have concluded
that introducing longer time lags into an environmental externality increases the optimal level
of the activity that generates that externality (Fleming et al. 1995; Kim et al. 1993), we show
that it may be optimal for regulators to allow greater levels of the externality with shorter time
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lags relative to the externality with longer time lags. This difference in our results arises from
the fact that the aforementioned studies employed deterministic models, whereas our models
are stochastic. Our results also differ from those commonly found in the vast literature on
water quality markets for point and non-point source pollution (see for example, Horan 2001;
Malik et al. 1993; Shortle 1987). These studies suggest that trading policies in these markets
should be designed so as to encourage greater control of non-point sources relative to point
sources due to the larger uncertainty associated with emissions from non-point sources. In
contrast, our results indicate that when a regulator allocates emissions levels to two polluters
that generate lagged externalities, it may be optimal to encourage greater emissions from
the polluter associated with greater uncertainty. We find that such an optimal allocation of
emissions can arise if the polluter associated with greater uncertainty is also associated with
environmental damages that occur with very long time lags.

Our paper proceeds as follows. Section 2 provides a brief summary of existing studies
that address the role of time lags in optimal economic decision-making. We present our
two-period, two-polluter model in Sect. 3, and in Sect. 4 we investigate the properties of the
optimal emissions policy that results from the model. Section 5 provides a discussion of the
policy implications of our results, and Sect. 6 concludes.

2 Background: Time Lags and Environmental Policy

In our analysis, we will focus on the role of time lags in physical processes of environmental
systems as opposed to lags in socioeconomic systems, such as those that arise from regulatory
processes or human behavior. In many cases, lags in physical processes are caused by spatial
processes in which it takes a certain amount of time for a contaminant to be transported from
its source to the locationwhere it causes environmental damage. For example, if contaminants
are released in a river upstream fromadrinkingwater source, itmay take several days orweeks
for the contaminants to flow down the river and affect drinking water quality. Similarly, there
is evidence that current patterns of invasive species presence better reflect historical rather
than contemporary human activities (Essl et al. 2001). In other cases, lags may be caused
by inertia in physical or chemical processes such that a natural system does not respond
instantaneously to increases or decreases in the emissions of a pollutant. For example, even
if greenhouse gas concentrations in the Earth’s atmosphere were to be reduced in the short
term, because it will take some time for the oceans to dissipate the heat that they have already
taken up, desired reductions in temperature on Earth may take much longer to materialize.
More generally, we are interested in all environmental externalities in which the negative
effects of an economic activity do not take place instantaneously but instead take place in
some time period in the future.

Moreover, wewill focus on situations in which a regulator must managemultiple polluters
that negatively affect the environment with different time lags. While polluters that generate
externalities with different time lags could be regulated separately, a social planner may
wish to regulate them jointly if the pollution affects the same environmental medium. By
regulating these polluters jointly, the social planner will be able to account for tradeoffs
between the emissions of the different polluters so as to achieve a desired reduction in
pollution at minimum aggregate cost. A concrete example of such a scenario would be the
comprehensive regulation of air pollutants that contribute to climate change, in which a
social planner would seek an optimal allocation of emissions of carbon dioxide, methane,
black carbon, and other contaminants. Our analysis will show that the optimal allocation of
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emissions across these different pollutants could be driven in part by the fact that increases or
decreases in carbon dioxide emissionswill take longer to affect global temperatures compared
to changes inmethane andblack carbon emissions (UNEP2011).Another real-world example
is that of awater resourcemanagerwho is concerned about pollution in a targetwater body due
to nitrates delivered in groundwater discharge from agricultural fields and animal operations.
In this situation, the manager will need to account for lags between implementation of best
management practices and water quality improvements in the target water body that range
from 1 to 100 years, depending on the location of the pollutant source (Meals and Dressing
2008).

Previous studies on the impact of time lags on optimal economic decision-making have
largely focused on problems outside the realm of environmental and natural resource eco-
nomics, primarily on cases in which current decisions by a firm impact the demand for their
products with a lag. These studies includemodels of dynamic advertising policy (Kamien and
Muller 1976; Nerlove and Arrow 1962), population accumulation and its implications on the
macroeconomy (Arthur and McNicoll 1977; van Imhoff 1989), and the production and taxa-
tion of durable goods (Muller and Peles 1988, 1990; Goering and Boyce 1999; Runkel 2003).
In these studies, lags are shown to be a significant determinant of the profit-maximizing strat-
egy of individual firms. However, the conclusions provided by these models are not directly
applicable to environmental issues, since lags in these applications only impact private costs
and thus do not affect the rest of society through externalities.

In the environmental economics literature, a series of papers has incorporated time lags in
models of optimal control of groundwater pollution. Inmodeling the response of groundwater
systems to emissions, these studies adopt a stock-and-flow approach similar to the state
equations that describe capital accumulation in the macroeconomics literature. In most cases,
emissions are treated as a flow that, with some temporal delay, gets added to a stock of ambient
pollution that decays over time. Kim et al. (1993) and Fleming et al. (1995) develop dynamic
models that examine the effect of time lags between nitrogenous fertilizer application and
nitrate contamination of aquifers on optimal regulatory policy. Conrad and Olson (1992),
Yadav (1997), Nkonya and Featherstone (2000) and Ibendahl and Fleming (2007) conduct
empirical studies of agricultural practices in the US and use the estimated models to test the
effect of regulations such as nitrogen standards and user fees. Recent work has also examined
the role of lags in optimal carbon sequestration paths (Ragot and Schubert 2008; Caparrós
2009).

While these studies provide compelling theoretical and empirical evidence that lags play
a key role in determining optimal economic activity in the presence of externalities, models
employed in these studies only involve one decision-maker. As a result, an optimal policy
does not have to adjust for the tradeoffs involved in a regulatory context with multiple,
heterogeneous agents. We explore these tradeoffs in two of the four model formulations we
develop below, namely, those for which emissions from firms can interact through the stock
of accumulated pollution. Another difference between our analysis and existing studies is
that the models we present are stochastic, allowing us to account for the possible interaction
between lags and uncertainty in the decision-maker’s problem.

3 A Model with Two Firms and Two Time Periods

In this section, we present a social planner’s problem inwhich a regulatormust assign optimal
emissions levels to two polluters, one of which causes environmental damages immediately
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while the other causes environmental damages with a one-period lag. Because we are inter-
ested in time lags in physical processes of environmental systems as opposed to lags in
socioeconomic systems, we assume that the structure of the lags are determined exogenously
and cannot be modified by the regulator or by the polluters. We will choose functional forms
to represent the polluters’ abatement costs, the environmental damages caused by pollution,
and the stochastic process that affects pollution over time. In developing these components,
our goal is to present the simplest model that incorporates lags and uncertainty that will
still yield concrete insights regarding an optimal emissions policy. While real-world envi-
ronmental problems involving lagged externalities are likely to be more complicated than
the model we present here, we will show that even a relatively simple setting with lags and
uncertainty will imply optimal emissions strategies that are qualitatively different from those
that arise from models that account for only lags or only uncertainty. Furthermore, our use of
explicit functional forms and derivation of closed-form solutions provide clarity and allow
us to identify the specific economic forces driving the optimal management strategy.

3.1 Abatement Costs and Environmental Damages

Consider a market consisting of two polluters, Firms A and B. Both firms generate emissions
in the first time period only and do not generate emissions in the second period. In the absence
of regulation, both Firms A and B each choose to emit at a level given by ē. However, in
the presence of regulation, each firm may choose to reduce its emissions to a level e j , where
j = A, B and e j < ē, at a cost that is given by identical linear abatement cost functions:

C j (ē j − e j ) = φ(ē − e j ) for j = A, B. (1)

In Eq. (1), ē j − e j represents the quantity of emissions abated by firm j and φ is a scaling
parameter. This functional form implies that firms can incrementally reduce their emissions
at constant marginal cost.1 We choose identical abatement cost functions for the two firms for
ease of exposition and in order to focus our analysis on the role of time lags and uncertainty
on optimal emission rates; assigning different abatement cost functions to the two firms does
not lead to qualitative differences in our results.

3.2 Lags

Although the two firms generate emissions only in the first period, these emissions can affect
the environment in the first period as well as in the second period due to the presence of
time lags. In our model, emissions by the two firms pollute a single natural resource or
environmental medium, the state of which is represented by the variable xt , for t = 1, 2. As
such, the state variable xt can represent the concentration of pollutants measured at an air
quality monitoring station or the accumulation of carcinogens in a stream or aquifer in time
period t . Hereafter, we will refer to xt as the ambient contaminant concentration at time t .

Emissions by the two firms affect ambient contaminant concentration differently over the
two time periods in our model. Specifically, while both Firms A and B generate emissions
in time period t = 1, Firm A’s emissions get added to ambient contaminant concentration
in period t = 1, while Firm B’s emissions get added to ambient contaminant concentration
in period t = 2. In other words, emissions by Firm A generate environmental damages

1 We are unable to derive closed-form solutions for optimal emissions levels when firms’ abatement costs
functions are nonlinear. However, we are able to show that the relationship between key model parameters and
optimal emissions levels are largely the same under linear or nonlinear cost functions. Please refer to “Optimal
Emission Levels Under Generic Abatement Costs” section in “Appendix” for these derivations.
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Fig. 1 Graphical illustration of the difference between time lags and persistence

instantaneously, while emissions by Firm B generate environmental damages with a one-
period lag. As an illustrative example, consider a situation in which a social planner cares
about the impacts of air pollutants on global mean temperature. Firm A could be a polluter
that primarily emits black carbon, such that temperatures are affected almost immediately
by emissions by that firm. In contrast, Firm B could be a polluter that primarily emits carbon
dioxide, and as a result, temperatures are affected by emissions with a much longer delay.

We will allow for persistence in ambient contaminant concentrations over time, that is, we
will allow concentrations in time period 2 to be determined in part by concentrations in time
period 1. The degree of persistence will be represented by the parameter ρ in our model. For
our analysis, it is important to distinguish the effects of time lags from those of persistence.
When the environmental impacts of a pollutant are persistent but not lagged, emissions of the
pollutant start generating impacts immediately and continue to do so in future time periods
even after emissions have ceased. In contrast, when time lags are present, environmental
impacts don’t start occurring until a certain amount of time after the emissions take place.
Figure 1 provides a graphical illustration of the difference between time lags and persistence.
Panel (a) depicts a situation in which a unit of emissions takes place at time t0 without any
further emissions after t0. Panel (b) illustrates the impact of this unit of emissions on ambient
contaminant concentrations over time when the pollutant is characterized by both time lags
and persistence. The presence of a time lag implies that ambient contaminant concentrations
are not affected by emissions until some time after t0. Persistence of the pollutant implies
that once the pollutants start affecting ambient contaminant concentrations, they continue to
do so for a while. The figure helps illustrate the subtle but important difference between these
two dynamic effects; they are modeled separately in our analysis, and our results show that
they have qualitatively different effects on optimal emissions policies.

3.3 Uncertainty

In addition to being affected by firm emissions, ambient contaminant concentration is subject
to a stochastic shock θt in each time period. Although the realized shock in time period 1 is
observable, the shock in timeperiod 2 is unknown tofirmsor to the social planner. Examples of
stochastic processes that affect ambient contaminant concentrations in the real world include
wind speed and direction, precipitation, and temperature. The stochastic shock θt can also
represent uncertainty that results from insufficient knowledge regarding the true behavior of
natural systems, such as uncertainty over the future impacts of climate change.

Because different environmental systems may be subject to different types of stochastic
processes, we will consider two alternative forms of uncertainty in the evolution of ambient
contaminant concentration over time. While both of the stochastic processes we consider are
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relatively simple, our analysis will show that even small differences in the type of uncertainty
associated with an environmental systemwill lead to significantly different optimal strategies
to manage lagged externalities that affect that system.

3.3.1 Uncertainty Type 1: Serial Correlation in the Shocks to Ambient Contaminant
Concentrations

For the first type of uncertainty, we allow no serial correlation in ambient contaminant con-
centration (i.e. ρ = 0) but do allow for serial correlation in the shocks to ambient contaminant
concentrations, θt . The evolution of state variable xt can be expressed as:

xt =
{
eA + θ1 if t = 1,
eB + θ2 if t = 2,

where θ2 = μθ1+ε2, ε2 ∼ N (0, σ 2
ε ), and θ1 is given. The parameterμ ∈ (0, 1) describes the

persistence of the shocks to ambient contaminant concentration. More generally, this form
of uncertainty is consistent with shocks to environmental systems that are correlated over
time, so that positive shocks are more likely to be followed by positive shocks rather than
negative shocks, and vice-versa. At the same time, in this form of uncertainty, the state of the
environment itself in any time period is independent of the state of the environment in other
time periods.

One real-world scenario that fits the above description is a local air pollutant that dissipates
relatively quickly after it is emitted, such as particulate matter. Thanks to the rapid dissipation
of the pollutant, ambient contaminant concentrations return to zero after one time period,
unless additional emissions are released. Serially correlated shocks in this scenario could
be generated by temperature fluctuations, where warm days are more likely to be followed
by warm days rather than cold days, and vice versa. Temperature is often an important
determinant of ambient air quality but is also difficult to predict far in advance (Camalier
et al. 2007).

It is important to note that, under this first type of uncertainty, the influence of emissions by
the two firms on ambient contaminant concentration is isolated across the two time periods;
that is, ambient contaminant concentration in time period 1 is only affected by Firm A, and
ambient contaminant concentration in time period 2 is only affected by Firm B. As a result,
pollution by the two firms does not interact under uncertainty type 1, and the social planner’s
problem is equivalent to solving for each firm’s optimal emissions rate separately. Uncertainty
type 2, which we describe below, allows both Firms A and B to affect ambient contaminant
concentrations in the same time period, leading to an interaction between the two polluters.

3.3.2 Uncertainty Type 2: Serial Correlation in Ambient Contaminant Concentrations

In the second form of uncertainty, we allow for serial correlation in ambient contaminant
concentration (i.e. ρ > 0) but no serial correlation in the shocks θt . Under this form of
uncertainty, the state equation can be written as an AR(1) process as follows:

xt =
{

ρx0 + eA + θ1 if t = 1,
ρx1 + eB + θ2 if t = 2,
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where θ2 ∼ N (0, σ 2
θ ), and x0 as well as θ1 are given. As a result, the level of ambient

contaminant concentration in period t = 2 is a function of the level of ambient contaminant
concentration in period t = 1, but the shock to ambient contaminant concentration in period
t = 2 is independent of the shock in period t = 1. This second form of uncertainty is
consistent with the behavior of environmental systems that exhibit persistence over time.
For example, this process could describe the concentration of a pollutant that accumulates
in the environment because the rate at which it is injected into the environment exceeds the
environment’s capacity to assimilate the pollutant.2

In this second form of uncertainty, emissions by both Firms A and B influence ambient
contaminant concentration in time period 2. This is in contrast to pollution dynamics under
uncertainty type 1, in which emissions by the firms do not interact. The fact that there is
an interaction between polluters in uncertainty type 2 will introduce a tradeoff between
emissions that generate immediate and delayed damages.

Under both uncertainty type 1 and 2, the social planner can reduce the risk of future
environmental damages by decreasing the amount of pollutants emitted in the future. How-
ever, our model does not allow the social planner to reduce the probability of experiencing a
negative shock in the future. Using the terminology of Ehrlich and Becker (1972), the social
planner in our models is able to self-insure, but not able to self-protect, against future uncer-
tainty by forgoing current emissions. An interesting extension to our model would allow for
the social planner to take actions that adjust the probability distribution of shocks to ambient
contaminant concentration, as such strategies may be relevant to real-world environmental
management problems.

We can also draw parallels between our formulations of uncertainty and the analysis
of Shogren and Crocker (1991, 1999), who distinguish between exogenous risk, which is
involuntary exposure to risk, and endogenous risk, which is voluntary exposure to risk.
Uncertainty types 1 and 2 can be described as involving exogenous and endogenous risk,
respectively, because in the latter form of uncertainty, the social planner can self-insure
against future uncertainty by forgoing current emissions by Firm A.

3.4 Environmental Damage Function

Positive levels of ambient contaminant concentration lead to damages in the environment,
the social costs of which are represented by a damage function. Examples of such social costs
include negative impacts to human health, reduced availability of clean water, or a loss in
biodiversity. In our analysis, we will choose two different formulations for the environmental
damage function: quadratic functions and exponential functions. Quadratic and exponential
functional forms have been used extensively in the literature tomodel environmental damages
from pollution (see, for example, Conrad and López 2002; Harper and Zilberman 1992;
Laukkanen and Huhtala 2008;Weitzman 2010). As we will show below, these two functional
forms will lead to different optimal emissions policies based on how they relate uncertainty
to expected marginal damages.

2 Because both the initial ambient contaminant concentration level (x0) and the shock in time period 1 (θ1) are
additive, it is possible to choose a different notation that represents the two initial conditions using only one
variable. In fact, our analysis will show that changes in x0 and θ1 have the same qualitative impact on optimal
emissions. However, we have decided to retain the notation that separates the initial stock level from the initial
shock in order to better conform to the literature, which often uses recursive formulations to characterize the
evolution of stocks over time.
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3.4.1 Quadratic Damage Function

Thefirst formulationmakes environmental damage costs quadratic in the level of the pollution
stock:

D(xt ) = αxt + γ

2
x2t for t = 1, 2, (2)

where α and γ are scaling parameters for the damage function. Together, α and γ determine
how rapidly environmental damages increase as a result of higher ambient contaminant
concentration. Note that with a quadratic damage function, marginal damages are linear in
the level of ambient contaminant concentration.

3.4.2 Exponential Damage Function

The second environmental damage function we consider takes on an exponential form:

D(xt ) = exp(ψxt ) − 1 for t = 1, 2, (3)

where ψ is a scaling parameter. Unlike the quadratic damage function, marginal damages
are convex in the level of ambient contaminant concentration in this second damage function
specification. Note thatψ is the damage function-equivalent of the coefficient of risk aversion
for exponential utility functions in consumer theory. In our context, ψ can be thought of as
representing the degree to which uncertainty in environmental damage outcomes is costly to
society. However,ψ should not be thought of as a measure of risk preference, because unlike
utility functions, damage functions only represent monetized physical damages caused by
pollution.

4 Properties of the Optimal Emissions Policy

In this section, we will combine the two formulations of the environmental damage function
and the two types of uncertainty defined above in order to develop four different social
planner’s problems. The social planner’s problems have the following general form:

min
eA,eB

φ(ē − eA) + φ(ē − eB) + D(x1) + βE [D(x2)| θ1] , (4)

where the damage functions D(·) take on quadratic (Eq. 2) or exponential (Eq. 3) forms and
the stochastic ambient contaminant concentration levels x1 and x2 follow uncertainty type 1
(Sect. 3.3.1) or uncertainty type 2 (Sect. 3.3.2). In combination, this yields social planner’s
problems involving (a) quadratic damages with uncertainty type 1, (b) exponential damages
with uncertainty type 1, (c) quadratic damages with uncertainty type 2, and (d) exponential
damages with uncertainty type 2. For each social planner’s problem, we will derive closed-
form solutions for optimal emissions levels for Firms A and B. We will also explore how
these optimal emissions levels depend on themagnitude of keymodeling parameters, namely,
the discount factor (β), initial conditions for ambient contaminant concentration (θ1 and x0),
indicators of persistence (μ andρ) and the variance of the stochastic process affecting ambient
contaminant concentration (σ 2

ε and σ 2
θ ).
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4.1 Quadratic Damages and Uncertainty Type 1

Let e∗
A and e∗

B denote optimal emissions levels for Firms A and B, respectively. When
the structure of uncertainty is such that there is serial correlation in the shocks to ambient
contaminant concentration but no serial correlation in ambient contaminant concentration
per se, solving the minimization problem in (4) leads to the following result:

Proposition 1 Under a quadratic damage function and uncertainty type 1, optimal emissions
levels for Firms A and B are equal to:

e∗
A = φ − α

γ
− θ1, (5)

e∗
B = 1

γ

(
φ

β
− α

)
− μθ1. (6)

Proof See derivation in “Optimal Emission Levels Under Uncertainty Type 1 and Quadratic
Damages” section in “Appendix”. ��

According to Eqs. (5) and (6), under a quadratic damage function and uncertainty type
1, the optimal emissions level for Firm A is decreasing in the level of the initial shock to
ambient contaminant concentration, θ1, but is independent of the discount factor, β, the
degree of persistence of shocks to ambient contaminant concentration, μ, and the variance
in shocks to ambient contaminant concentration, σ 2

ε . The optimal emissions level for Firm
B is also decreasing in θ1 and independent of σ 2

ε , but unlike the optimal emissions level for
Firm A, it is decreasing in β. In addition, the relationship between e∗

B and μ depends on the
sign of the initial shock θ1. If θ1 is positive (i.e. the initial shock is unfavorable to ambient
contaminant concentrations), greater persistence is associated with lower optimal emissions
by Firm B, and vice versa.3

The intuition behind the relationship between optimal emissions for the two firms and β

is relatively straightforward. Because damages caused by Firm A’s emissions occur instan-
taneously but damages caused by Firm B’s emissions occur in the future, the social costs
of Firm B’s emissions are discounted but those of Firm A are not. As a result, for a higher
level of the discount factor β (which is equivalent to a lower level of the discount rate), it
is optimal for the social planner to allow more emissions from Firm A than from Firm B.
Equations (5) and (6) also show that the difference in optimal emissions levels for Firms A
and B gets larger as the discount factor decreases (that is, as the discount rate increases).

Another result associated with Proposition 1 is that optimal emissions levels for both
firms are decreasing in the size of the initial shock to ambient contaminant concentrations,
θ1, which is observed at the time when the social planner chooses the emissions levels.
Because the damage function is convex in ambient contaminant concentration, if the social
planner observes an unfavorable shock (θ1 > 0), her optimal strategy is to choose a lower
level of emissions for Firm A relative to the case in which there is no shock. Furthermore,
since shocks are correlated over time under uncertainty type 1, the expected shock in the
second time period, θ2, conditional on observing a shock θ1 in the first time period, is
equal to E[θ2|θ1] = μθ1. Thus, observing an unfavorable initial shock also leads to a lower
optimal emissions level for FirmB, even though its emissions only affect ambient contaminant
concentration in the second time period.Note that the smaller themagnitude of the persistence

3 Note that in our model, positive (i.e. >0) realizations of the shocks θ1 and θ2 are actually “bad” from
society’s point of view because they lead to greater environmental damage.

123



Optimal Management of Environmental Externalities. . .

parameterμ, the smaller the adjustment that ismade toFirmB’s optimal emissions in response
to the observed initial shock.

In addition, because |θ1| > |μθ1|, larger, unfavorable initial shocks to ambient contaminant
concentration lead to greater reductions in emissions by Firm A than by Firm B; that is, the
optimal policy will favor emissions that generate environmental damages with longer lags.
Intuitively, if a social planner sees a large unfavorable shock in the first time period, she
will try to move the environmental damages from emissions farther into the future, since the
conditional expected mean of the shock in the future is smaller in magnitude than the shock
that is observed in the present. Conversely, if the initial shock to the resource is favorable, the
social planner will adjust the optimal emissions rates for both firms upwards, with a larger
increase for Firm A than for Firm B, thus bringing environmental damages relatively closer
to the present.

Comparative statics also state that the variance in shocks to ambient contaminant concen-
tration, σ 2

ε , has no effect on the optimal emissions level of either firm. This result is due to
the fact that under a quadratic damage function, marginal damages are linear (i.e. the third
derivative of the damage function is equal to zero). Therefore, an increase in the variance of
ambient contaminant concentration has no effect on expected marginal damages, and thus
has no effect on optimal emissions rates.

The last key result associated with Proposition 1 is that the optimal emissions level for
Firm A may be greater than or less than the optimal emissions level for Firm B. The reason
behind this ambiguity can be established by deriving the expression for the difference in
optimal emissions rates:

e∗
A − e∗

B = φ

γ

(
1 − 1

β

)
+ θ1(μ − 1). (7)

Because β ∈ (0, 1), the first group of terms on the right-hand side of Eq. (7) is always
negative, thus implying higher emissions levels for Firm B than for Firm A (e∗

A < e∗
B).

However, assuming thatμ ∈ (0, 1), if the social planner observes a sufficiently large negative
value of θ1, optimal emissions may be higher for Firm A than for Firm B (e∗

A > e∗
B ). In other

words, while discounting will encourage the social planner to adjust emissions by the two
firms so as to push environmental damages farther into the future, if a sufficiently favorable
shock is observed in the first period, it will be optimal for the social planner to try to move
damages closer to the present due to the convexity of the damage function. As a result, the
relative sizes of the “discounting effect” and the “initial shock effect” will determine the
ranking of the two firms with respect to their optimal emissions rates.

4.2 Exponential Damages and Uncertainty Type 1

We now show how the relationships between key parameters and optimal emissions change
when the environmental damage function has an exponential form instead of a quadratic
form:

Proposition 2 Under an exponential damage function and uncertainty type 1, optimal emis-
sions levels for Firms A and B are equal to:

e∗
A = 1

ψ
ln

(
φ

ψ

)
− θ1, (8)

e∗
B = 1

ψ
ln

(
φ

ψβ

)
− μθ1 − ψσ 2

ε

2
. (9)
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Proof See derivation in “Optimal Emission Levels Under Uncertainty Type 1 and Exponen-
tial Damages” section in “Appendix”. ��

According to Eqs. (8) and (9), under an exponential damage function and uncertainty type
1, the optimal emissions level by Firm A exhibits the same relationship with key modeling
parameters as in the case with a quadratic damage function; optimal Firm A emissions are
decreasing in θ1 but independent of β,μ, and σ 2

ε . Likewise, optimal Firm B emissions are
decreasing in β and θ1, while the effect of μ depends on the sign of the initial shock θ1.
However, unlike the case with a quadratic damage function, under an exponential damage
function, optimal Firm B emissions are decreasing in σ 2

ε . While changes in σ 2
ε had no effect

on optimal emissions levels under quadratic damages, under exponential damages, increases
in σ 2

ε are associated with lower levels of optimal emissions for Firm B, the firm with longer
lags in damages.

This inverse relationship between Firm B optimal emissions and the degree of uncertainty
is driven by two factors. The first is that, under uncertainty type 1, the conditional variance of
the stochastic process increases the farther the social planner looks into the future. In our two-
period model, this is embodied in the fact that the shock in the first time period is observed
(and thus carries no uncertainty) and the shock in the second time period is associated with a
level of variance σ 2

ε .
4 As a result, the social planner’s ability to forecast ambient contaminant

concentrations degrades over time.
The second factor that drives the inverse relationship between Firm B optimal emissions

and the degree of uncertainty is the curvature of the exponential damage function, which is
characterized by a positive third derivative. This means that marginal damages are convex in
ambient contaminant concentration, and an increase in uncertainty raises expected marginal
damages. At the same time, under uncertainty type 1, society’s uncertainty regarding the
state of the resource increases the farther it tries to look into the future. As a result, in an
optimal solution, expected future ambient contaminant concentrations must decrease relative
to current ambient contaminant concentrations, which is accomplished by reducing emissions
by Firm B. More intuitively, in the presence of an exponential damage function, the social
planner has an incentive to bring expected environmental damages closer to the present,
into a period of time during which the level of ambient contaminant concentration is more
predictable.

This reallocation of environmental damages over time in response to increased uncertainty
is analogous to consumer behavior in models of precautionary savings from the macroeco-
nomic literature (Leland 1968; Sandmo 1970). In these models, increases in the variance
of consumption leads consumers to be more “prudent” by sacrificing current consumption
in favor of future consumption, as long as the third derivative of their utility functions is
positive. However, as noted previously, we must exercise care when employing the analogy
of consumer behavior when describing the solution to our model. The fact that optimal emis-
sions depend on the degree of uncertainty in pollution should not be interpreted as being an
outcome of risk preferences. In fact, the social planner in our model is risk neutral, but the
degree of uncertainty is relevant in determining optimal emissions because of the convex

4 In a model with more than two time periods, the conditional variance of the stochastic process in any given
period s would be equal to:

Var[θs |θ1] = σ 2
ε

s−1∑
i=0

μ2i , (10)

which increases monotonically over time as it converges to the unconditional variance, σ 2
ε /(1 − μ2).
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relationship between marginal damages and ambient contaminant concentrations under an
exponential damage function.

As in the quadratic damage function case, optimal emissions by Firm A may be higher
than or lower than optimal emissions by Firm B under an exponential damage function. The
difference between optimal emissions levels in this case is given by:

e∗
A − e∗

B = 1

ψ
ln(β) + θ1(μ − 1) + 1

2
ψσ 2

ε . (11)

The first two terms on the right-hand side of Eq. (11) embody the discounting effect and initial
shock effect that also exist under quadratic damages. The additional third term represents
the “precautionary effect” described above and contributes to the ambiguity in the optimal
allocation of emissions.

4.3 Quadratic Damages and Uncertainty Type 2

We now consider optimal solutions when the social planner faces uncertainty type 2, in
which ambient contaminant concentration is correlated over time but shocks to ambient
contaminant concentration are not. In this case, solving the minimization problem in (4)
leads to the following result:

Proposition 3 Under a quadratic damage function and uncertainty type 2, optimal emissions
by Firms A and B are equal to:

e∗
A = φ − φρ − α

γ
− ρx0 − θ1, (12)

e∗
B = φ − αβ − βρ(φ − φρ − α)

γβ
. (13)

Proof See derivation in “Optimal Emission Levels Under Uncertainty Type 2 and Quadratic
Damages” section in “Appendix”. ��

According to Eqs. (12) and (13), under a quadratic damage function and uncertainty type
2, the optimal emissions level by Firm A is decreasing in the level of the initial shock to
ambient contaminant concentration, θ1, the initial ambient contaminant concentration level,
x0, and the degree of persistence of ambient contaminant concentration, ρ, but is independent
of the discount factor, β, and the variance in shocks to ambient contaminant concentration,
σ 2

θ . In contrast, optimal Firm B emissions are decreasing in β but independent of θ1, x0, and
σ 2

θ . We also find that the direction of the relationship between optimal Firm B emissions and
ρ is ambiguous.

Because ambient contaminant concentration exhibits persistence over time under uncer-
tainty type 2, the initial concentration level x0 plays a role in determining the optimal
emissions policy. Specifically, if the social planner observes a higher initial concentration
level when she solves her optimization problem, she will choose a lower optimal emissions
level for Firm A. This is due to the fact that choosing a lower emissions level for Firm A
will lead to a lower level of marginal damages in both the first and second time periods. The
social planner will also choose a lower optimal emissions level for Firm A if the observed
initial shock θ1 is unfavorable, in order to lower the level of marginal damages experienced
in the first period. In this two-period model, optimal emissions by Firm B are independent of
the initial level of ambient contaminant concentration as well as the initial shock to ambient
contaminant concentration because (a) shocks to ambient contaminant concentrations are not
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correlated over time and (b) the concentrations that persist into the second time period can
only be controlled by emissions in the first period. Finally, the variance parameter σ 2

θ does
not play a role in determining the optimal emissions level for either firm, for the same reason
that the degree of uncertainty does not determine optimal emissions under uncertainty type
1 when the damage function is quadratic.

The difference in optimal emission rates for Firms A and B can be expressed as:

e∗
A − e∗

B = φ(β − 1) − βφρ2 − βρα

γβ
− ρx0 − θ1. (14)

Equation (14) demonstrates that, as was the case under uncertainty type 1, the initial shock
effect can dominate the discounting effect so as to make the ranking of e∗

A and e∗
B ambiguous.

4.4 Exponential Damages and Uncertainty Type 2

In the fourth and final social planner’s problem that we solve, we consider an exponential
damage function coupled with uncertainty type 2. Solving this minimization problem leads
to the following result:

Proposition 4 Under an exponential damage function and uncertainty type 2, optimal emis-
sions by Firms A and B are equal to:

e∗
A = 1

ψ
ln

(
φ − φρ

ψ

)
− ρx0 − θ1, (15)

e∗
B = 1

ψ

[
ln

(
φ

βψ

)
− ρ ln

(
φ − φρ

ψ

)]
− ψσ 2

θ

2
. (16)

Proof See derivation of optimal emissions rates in “Optimal Emission Levels Under Uncer-
tainty Type 2 and Exponential Damages” section in “Appendix”. ��

According to Eqs. (15) and (16), under an exponential damage function and uncertainty
type 2, the optimal emissions level byFirmAexhibits the same relationshipwith keymodeling
parameters as in the case with a quadratic damage function; optimal Firm A emissions are
decreasing in θ1, x0, andρ, but are independent ofβ andσ 2

θ . Furthermore, aswas the casewith
the quadratic damage function, optimal FirmBemissions are decreasing inβ and independent
of θ1 and x0, and the direction of the relationship with ρ is ambiguous. However, unlike the
case with the quadratic damage function, optimal Firm B emissions are decreasing in σ 2

θ , the
variance in shocks to ambient contaminant concentrations.

As was the case with the exponential damage function and uncertainty type 1, the social
planner has an incentive to reduce ambient contaminant concentrations during time periods
associated with greater uncertainty. While the conditional variance of shocks to ambient
contaminant concentration is constant over time under uncertainty type 2, the conditional
variance of ambient contaminant concentration levels increases over time because of serial
correlation in the concentrations.

Finally, as in all previous social planner’s problems examined in this analysis, the optimal
emissions level for Firm A may be greater than or less than the optimal emissions level for
Firm B due to the combined effects of discounting, the initial shock to ambient contaminant
concentrations, and “precaution” in the face of uncertainty. This ambiguity is evident in the
expression for the difference in optimal emission rates:

e∗
A − e∗

B = 1

ψ

[
(1 + ρ) ln

(
φ − φρ

ψ

)
− ln

(
φ

βψ

)]
− ρx0 − θ1 + 1

2
ψσ 2

θ . (17)
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Table 1 Influence of key parameters on optimal emissions

Quadratic damages Exponential damages

Firm A (e∗A) Firm B (e∗B ) Firm A (e∗A) Firm B (e∗B )

Uncertainty type 1

Discount factor (β) 0 − 0 −
Initial shock (θ1) − − − −
Persistence in shocks (μ) 0 −, 0, or + 0 −, 0, or +
Variance (σ 2

ε ) 0 0 0 −
Uncertainty type 2

Discount factor (β) 0 − 0 −
Initial shock (θ1) − 0 − 0

Initial state (x0) − 0 − 0

Persistence in concentration (ρ) − −, 0, or + − −, 0, or +
Variance (σ 2

θ ) 0 0 0 −

In this table, a plus sign (+) indicates a direct relationship between optimal emissions and the key modeling
parameter, and a minus sign (−) indicates an inverse relationship. A zero (0) indicates a lack of relationship
between optimal emission and the key modeling parameter

Table 1 summarizes the results from the four social planner’s problems considered in this
section and provides an overview of how the relationships between optimal emissions and key
modeling parameters differ across environmental damage functions and stochastic processes.

5 Discussion

The main policy implication from the preceding analysis is that the relationship between
optimal emissions and the length of the time lag associated with a polluter’s externality is not
straightforward in the presence of uncertainty. Under the four combinations of environmental
damage functions and stochastic processes examined in our two-firm, two-period framework,
the optimal emissions level of a firm generating externalities with short lags may be higher
than or lower than the optimal emissions level of a firm generating externalities with long
lags. Thus, if a regulator seeks to control multiple firms that generate externalities with
different lag times, the ranking of these firms in terms of their optimal emissions rates may
vary depending on the value of key environmental and socioeconomic parameters.

To make our theoretical results more concrete, we present some visual examples from
simulations based on the most complex scenario analyzed in the previous section, which
involved an exponential damage function and uncertainty type 2 (see Sect. 4.3). Figure 2
presents the optimal emissions levels for Firms A and B under different values of the variance
parameter σ 2

θ . The figure illustrates how for low levels of uncertainty, the optimal emissions
level for Firm B is higher than the optimal emissions level for Firm A. This is due to the
fact that for these low values of σ 2

θ , the discounting effect dominates the “precautionary”
effect, thus favoring emissions from the firm associated with longer time lags (Firm B).
However, at high levels of uncertainty, the “precautionary” effect dominates the discounting
effect, making it optimal to allow greater emissions from the firm associated with shorter
lags (Firm A).
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Fig. 2 Optimal emissions levels for Firms A and B at different values of the variance parameter σ 2
θ

Fig. 3 Optimal emissions levels for Firms A and B at different values of the persistence parameter ρ

Figure 3 illustrates the optimal emissions levels for the two firms under different values of
the persistence parameter ρ, holding other parameters constant. This simulation illustrates the
complexity that can arise in the optimal allocation of emissions when lags and uncertainty are
present simultaneously. As in Fig. 2, the ranking of the two firms with respect to their optimal
emissions switches at a given point within the range of the parameter of interest. However,
Fig. 3 illustrates an added nonlinearity in the relationship between optimal emissions by the
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two firms and the persistence parameter ρ. In fact, the optimal emissions level for Firm B is
non-monotonic in the level of persistence; at low levels of ρ, increases in persistence require
the regulator to decrease optimal emissions by Firm B, but at high levels of persistence,
increases in persistence imply increases in optimal emissions by Firm B.

Admittedly, the choice of parameter values in these simulations is arbitrary and is not
associated with an actual environmental management problem. We also acknowledge that
the two-period, two-firm case analyzed in Sect. 3 is a simplification; all of the components
of the social planner’s problem, including the structure of firm abatement costs, the environ-
mental damages, and stochastic process are likely to be much more complicated in reality.
However, our results show that the implications of time lags and uncertainty can introduce
significant complexity in the optimal environmental policy, even with a simple depiction of
the underlying physical and economic systems. As a result, optimal policies for real-world
environmental problems involving lagged and stochastic externalities are also likely to be
complex, and regulators may benefit from an awareness of the potential impact of lags and
uncertainty and use appropriately calibrated numerical models to formulate an actual policy.

There are several ways in which a regulator could implement the type of optimal policies
derived in this analysis. Other than a straightforward command-and-control type policy in
which the regulator caps each polluter’s emissions at the optimal level, the optimal allocation
can also be induced using a market-based approach such as a Pigouvian tax or tradable
emissions permit market. Under such a setup, polluters that seek to minimize their private
abatement costs will choose the socially optimal level of abatement if the pricing mechanism
reflects the optimality conditions associated with each social planner’s problem described in
Sect. 4. For example, in the case of the exponential damage function and uncertainty type 1
(Sect. 4.2), if we let pA and pB equal the emissions permit prices charged to Firms A and B
for the right to emit a unit of pollution in the first time period, then the optimality conditions
imply that the optimal permit pricing schedule is:

pA = ψ exp (ψ (eA + θ1)) , (18)

pB = ψβ exp

(
ψ (eB + μθ1) + 1

2
ψ2σ 2

ε

)
. (19)

Accordingly, if the two firms are allowed to trade emissions permits, they will be subject to
a trading ratio; if Firm A wishes to purchase a permit from Firm B, the trade must occur at a
ratio equal to:

τ = β exp

(
ψ

(
eB − eA + θ1(μ − 1) + 1

2
ψσ 2

ε

))
, (20)

which is the ratio of expected marginal damages associated with emissions by the two firms.
It is important to note that the regulator does not need to know the polluters’ abatement

cost functions in order to implement this market-based solution. However, the regulator does
need to know the lag structure associated with each polluter’s emissions, the environmental
damage function, and the associated stochastic process in order to correctly characterize the
marginal damages of emissions over time in the pricingmechanism. In addition, the design of
such policy instruments is more complicated than typical Pigouvian taxes or permit markets
addressed by environmental economists due to the fact that polluters must be regulated
differentially; polluters that cause externalities with different time lags must face different
prices for emissions. However, such differentiated policies have been discussed extensively
in the literature for the regulation of air pollutants (Atkinson and Lewis 1974; Krupnick 1986)
and for the management of water resources (Farrow et al. 2005; Kuwayama and Brozović
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2013). In fact, differentiated market-based regulations already exist, for example, in the form
of water pollution trading programs (Fisher-Vanden and Olmstead 2013).

A potential direction for future work is to explore the implications of time lags on the
regulator’s choice between price-based policies (e.g. taxes) and quantity-based policies (e.g.
tradable permits), based on the seminal work of Weitzman (1974). For example, Newell and
Pizer (2003) compared the performance of these two types of policies for controlling stock
externalities, with a focus on the roles of correlation of cost shocks across time, discounting,
and stock decay. In an application to the problem of greenhouse gases and climate change, the
authors find that a price-based instrument generates several times the expected net benefits
of a quantity instrument. An interesting extension would be to assess whether the presence
of time lags in climate change impacts alters this result significantly.

Our analysis also suggests that quadratic functional forms for damage functions, which
are widely used to quantify the environmental costs of pollution and overexploitation of
resources, may not be appropriate for deriving optimal polices to manage externalities with
heterogeneous lags. Quadratic functions are associated with marginal damages that are linear
in pollution and will thus not reflect the societal cost of increasing uncertainty. We have
shown that the third derivative of the damage function can play an important role in forming
an optimal pollution policy when (a) there is a tradeoff between two externalities of different
lag length and (b) there future state of the affected resource is uncertain. Furthermore, in
many discussions regarding economic activities that generate environmental damages in the
future, the effects of time lags and persistence are often conflated, when in fact they are
distinct dynamic elements. Time lags in externalities can exist without persistence, and vice
versa. Our modeling in Sect. 3 treated these two elements separately, and our results show
that they have qualitatively different implications on optimal environmental management.

Finally, our analysis revealed the importance of initial conditions when regulators seek to
manage a lagged and stochastic externality. Specifically, in all four of the scenarios developed
in Sect. 3, emissions levels were in part determined by shocks observed during the time
period in which the regulator sets the optimal allocation. The implication of this result in
the context of water resource management, for example, is that the optimal water allocation
across multiple users will be different depending on whether the allocation decision is made
in a wet year or a dry year. The fact that observed stochastic shocks matter in determining
an optimal policy may be an argument in favor of increased monitoring and evaluation of
current environmental conditions.

6 Conclusion

There are many processes in nature that exhibit time lags and uncertainty, but the joint
impact of these two features on the optimal management of environmental externalities has
thus far not been explored in the literature. In this paper, we developed a theoretical model
that demonstrates the potential for lags and uncertainty to alter the optimal allocation of
emissions across different firms. Our model with two polluters and two time periods, while
simple, provided clarity and allowed us to focus on the basic economic principles that arise
from this problem. We have shown that such optimal allocations will require differentiated
regulation of polluters, and that it is not obvious whether greater control should be exerted on
polluters that generate externalities with longer lags or on polluters that generate externalities
with shorter lags. Ourmodel with two polluters and two time periods revealed that the optimal
ranking of polluters with respect to the length of the time lag associated with their externality
will dependon (a) the discount rate, (b) conditional expectations of future states of the polluted

123



Optimal Management of Environmental Externalities. . .

resource, (c) persistence of the pollutant, and (d) initial conditions. The relationship between
these factors and optimal emissions depends crucially on the form of the environmental
damage function, specifically, on whether marginal damages are linear or not in the level of
ambient contaminant concentration.

A limitation of our study is the relative simplicity of the two-polluter, two-period model,
which was necessary to obtain analytical results that provide an intuitive understanding of
how environmental policies can be designed to manage externalities with lags and uncer-
tainty. Important simplifying assumptions included a linear abatement cost structure that was
common across polluters and the use of quadratic or exponential forms for environmental
damage functions. Furthermore, our optimal pollution problem was modeled as a one-time
decision, whereas real-world pollution problems are likely to involve repeated decisions over
time regarding emissions.

A multi-period version of our model would add interesting and complex features to an
optimal emissions policy. For example, under uncertainty type 2, if the social planner was
required to choose Firm A’s emissions in time period 2 as well as in time period 1, she may
choose to reduce emissions in time period 1 not only in response to an unfavorable initial
shock (the effects of which will persist into the period 2) but also in order to mitigate future
risk and allow for more emissions in time period 2. A dynamic version of our model would
also require consideration of “open loop” versus “closed loop” optimal solutions and the
question of whether the social planner is able to commit to a given emissions path after the
first time period.

Future research can also model problems involving environmental externalities with time
lags and uncertainty when regulators do not act as social planners. Lieb (2004) develops
an overlapping generations model with myopic governments that regulate a flow pollutant
that causes immediate damages and a stock pollutant that harms the environment only in the
future. The author shows that it is possible for emissions of the flow pollutant to follow an
environmental Kuznets curve as nations curtail emissions of the flow pollutant to counteract
the negative impacts of the stock pollutant, the emissions of which increase monotonically
as incomes in the nation rise. An extension of this model could assess whether uncertainty
in the evolution of the stock pollutant reinforces or diminishes the likelihood of observing
an environmental Kuznets curve.

Designing optimal emissions policies in real-world settings will require numerical mod-
eling that can account for more of the dynamic complexities inherent to natural and human
systems. The results from this paper can provide some intuition behind the results of future
studies that implement such numerical models of lagged and stochastic externalities that are
more realistic but too complex to explore analytically.
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Appendix: Mathematical Derivations

Optimal Emission Levels Under Uncertainty Type 1 and Quadratic Damages

Given the formof the abatement cost function in (1), the quadratic formof the damage function
in (2), and the stochastic process described in Sect. 3.3.1, the social planner’s objective is to:
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min
eA,eB

φ(ē − eA) + φ(ē − eB) +
[
α(eA + θ1) + γ

2
(eA + θ1)

2
]

+E

{
β

[
α(eB + θ2) + γ

2
(eB + θ2)

2
]∣∣∣ θ1

}
. (21)

We can make use of the fact that if a random variable y has mean E[y] and variance σ 2
y , then

E(αy + γ
2 y

2) = αE[y] + γ
2 [σ 2

y + (E[y])2]. Since E[θ2|θ1] = μθ1 and Var[θ2|θ1] = σ 2
ε by

definition, the social planner’s objective can be rewritten as:

min
eA,eB

φ(ē − eA) + φ(ē − eB) +
[
α(eA + θ1) + γ

2
(eA + θ1)

2
]

+β
{
α(eB + μθ1) + γ

2

[
σ 2

ε + (eB + μθ1)
2]} . (22)

The first-order conditions for an interior solution to this minimization problem are:

−φ + γ
(
e∗
A + θ1

) + α = 0, (23)

−φ + β
[
γ (e∗

B + μθ1) + α
] = 0. (24)

Equation (23) can be rewritten to obtain the closed-form solution for Firm A’s optimal
emissions:

e∗
A = φ − α

γ
− θ1. (25)

Equation (24) can be rearranged to obtain the closed-form solution for Firm B’s optimal
emissions:

e∗
B = 1

γ

(
φ

β
− α

)
− μθ1. (26)

Optimal Emission Levels Under Uncertainty Type 1 and Exponential Damages

Given the abatement cost function in (1), the exponential form of the damage function in (3),
and the stochastic process described in Sect. 3.3.1, the social planner’s objective is to:

min
eA,eB

φ(ē − eA) + φ(ē − eB) + [
exp(ψ(eA + θ1)) − 1

]
+E

{
β

[
exp(ψ(eB + θ2)) − 1

]∣∣ θ1} . (27)

We canmake use of the fact that if a random variable y is normally distributedwithmeanE[y]
and variance σ 2

y , then E[exp(y)] = exp(E[y]+ σ 2
y
2 ). Since E[θ2|θ1] = μθ1 and Var[θ2|θ1] =

σ 2
ε by definition, the social planner’s objective can be rewritten as:

min
eA,eB

φ(ē − eA) + φ(ē − eB) + [
exp(ψ(eA + θ1)) − 1

]

+β

[
exp

(
ψ (eB + μθ1) + ψσ 2

ε

2

)
− 1

]
. (28)

The first-order conditions for an interior solution to this minimization problem are:

−φ + ψ exp
(
ψ

(
e∗
A + θ1

)) = 0, (29)

−φ + ψβ exp

(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)
= 0. (30)
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Taking the natural logarithm of both sides of Eqs. (29) and (30) rearrangement yields the
closed-form solution for Firms A and B optimal emissions:

e∗
A = 1

ψ
ln

(
φ

ψ

)
− θ1, (31)

e∗
B = 1

ψ
ln

(
φ

ψβ

)
− μθ1 − ψσ 2

ε

2
. (32)

Optimal Emission Levels Under Uncertainty Type 2 and Quadratic Damages

Given the form of the abatement cost function in (1) and the quadratic form of the damage
function in (2), the social planner’s objective is to:

min
eA,eB

φ(ē − eA) + φ(ē − eB) +
[
α(ρx0 + eA + θ1) + γ

2
(ρx0 + eA + θ1)

2
]

+E

{
β

[
α

(
ρ2x0 + ρeA + ρθ1 + eB + θ2

) + γ

2

(
ρ2x0 + ρeA + ρθ1 + eB + θ2

)2∣∣∣ θ1
]}

.

(33)

We can make use of the fact that if a random variable y has mean E[y] and variance σ 2
y , then

E(αy + γ
2 y

2) = αE[y] + γ
2 [σ 2

y + (E[y])2]. Since E[θt ] = 0 and Var[θt ] = σ 2
θ by definition,

the objective function can be rewritten as:

min
eA,eB

φ(ē − eA) + φ(ē − eB) +
[
α(ρx0 + eA + θ1) + γ

2
(ρx0 + eA + θ1)

2
]

+β
{
α

(
ρ2x0 + ρeA + ρθ1 + eB

) + γ

2

[
σ 2

θ + (
ρ2x0 + ρeA + ρθ1 + eB

)2]}
. (34)

The first-order conditions for an interior solution to this minimization problem are:

−φ + α + γ
(
ρx0 + e∗

A + θ1
) + β

[
αρ + γ

(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

)
ρ
] = 0, (35)

−φ + β
[
α + γ

(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

)] = 0. (36)

Solving this system of two equations and two unknowns yields closed-form solutions for
optimal emissions by Firms A and B:

e∗
A = φ − φρ − α

γ
− ρx0 − θ1, (37)

e∗
B = φ − αβ − βρ(φ − φρ − α)

γβ
. (38)

Optimal Emission Levels Under Uncertainty Type 2 and Exponential Damages

Given the form of the abatement cost function in (1) and the form of the damage function
in (3), the social planner’s objective is to:

min
eA,eB

φ(ē − eA) + φ(ē − eB) + [
exp (ψ (ρx0 + eA + θ1)) − 1

]
+E

{
β

[
exp

(
ψ

(
ρ2x0 + ρeA + ρθ1 + eB + θ2

)) − 1
]∣∣ θ1} . (39)

We can make use of the fact that if a random variable y is normally distributed with mean

E[y] and variance σ 2
y , then E[exp(y)] = exp(E[y] + σ 2

y
2 ). Since E[θt ] = 0 and Var[θt ] = σ 2

θ

by definition, the objective function can be rewritten as:
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min
eA,eB

φ(ē − eA) + φ(ē − eB) + [
exp (ψ(ρx0 + eA + θ1)) − 1

]

+β

[
exp

(
ψ(ρ2x0 + ρeA + ρθ1 + eB) + ψ2σ 2

θ

2

)
− 1

]
. (40)

The first-order conditions for an interior solution to this minimization problem are:

−φ + ψ exp
(
ψ

(
ρx0 + e∗

A + θ1
))

+βψρ exp

(
ψ

(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

) + ψ2σ 2
θ

2

)
= 0, (41)

− φ + βψ exp

(
ψ

(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

) + ψ2σ 2
θ

2

)
= 0. (42)

Solving this system of two equations and two unknowns yields closed-form solutions for
optimal emissions by Firms A and B:

e∗
A = 1

ψ
ln

(
φ − φρ

ψ

)
− ρx0 − θ1, (43)

e∗
B = 1

ψ

[
ln

(
φ

βψ

)
− ρ ln

(
φ − φρ

ψ

)]
− ψσ 2

θ

2
. (44)

Optimal Emission Levels Under Generic Abatement Costs

In this appendix, we derive relationships between key model parameters and optimal emis-
sions levels using generic abatement cost functions and an exponential damage function.

Generic Abatement Costs, Exponential Damages, and Uncertainty Type 1

Under uncertainty type 1, the social planner’s objective is to:

min
eA,eB

C(ē − eA) + C(ē − eB) + exp(ψ(eA + θ1)) − 1

+E
{
β

[
exp(ψ(eB + θ2)) − 1

] |θ1
}
. (45)

As in “Optimal Emission Levels Under Uncertainty Type 1 and Exponential Damages”
section in “Appendix”, we can rewrite the social planner’s objective as:

min
eA,eB

C(ē − eA) + C(ē − eB) + exp(ψ(eA + θ1)) − 1

+β

[
exp

(
ψ(eB + μθ1) + ψσ 2

ε

2

)
− 1

]
. (46)

The first-order conditions for an interior solution to this minimization problem are:

−C ′ (ē − e∗
A

) + ψ exp
(
ψ

(
e∗
A + θ1

)) = 0, (47)

−C ′ (ē − e∗
B

) + βψ exp

(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)
= 0. (48)
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In order to examine how e∗
A and e∗

B vary with β, we take the total derivative of the first-order
conditions with respect to β and rearrange to get:

C ′′ (ē − e∗
A

) de∗
A

dβ
+ ψ2 exp

(
ψ

(
e∗
A + θ1

)) de∗
A

dβ
= 0, (49)

C ′′ (ē − e∗
B

) de∗
B

dβ
+ βψ2 exp

(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)
de∗

B

dβ

+ψ exp

(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)
= 0. (50)

Equations (49) and (50) can be rearranged to obtain expressions for the change in optimal
emissions for Firms A and B in response to a change in β:

de∗
A

dβ
= 0, (51)

de∗
B

dβ
= −

ψ exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)

C ′′ (ē − e∗
B

) + βψ2 exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

) . (52)

Assuming that C ′′(·) > 0, Eq. (52) implies that
de∗

B
dβ < 0. A similar procedure yields expres-

sions for the change inoptimal emissions in response to changes in othermodelingparameters,
θ1, μ, and σ 2

ε :

de∗
A

dθ1
= − ψ2 exp

(
ψ

(
e∗
A + θ1

))
C ′′ (ē − e∗

A

) + ψ2 exp
(
ψ

(
e∗
A + θ1

)) < 0, (53)

de∗
B

dθ1
= −

βμψ2 exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)

C ′′ (ē − e∗
B

) + βψ2 exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

) < 0, (54)

de∗
A

dμ
= 0, (55)

de∗
B

dμ
= −

βψ2θ1 exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)

C ′′ (ē − e∗
B

) + βψ2 exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

) � 0, (56)

de∗
A

dσ 2
ε

= 0, (57)

de∗
B

dσ 2
ε

= −
βψ3 exp

(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)

2
[
C ′′ (ē − e∗

B

) + βψ2 exp
(
ψ

(
e∗
B + μθ1

) + ψ2σ 2
ε

2

)] < 0. (58)

Generic Abatement Costs, Exponential Damages, and Uncertainty Type 2

Under uncertainty type 2, the social planner’s objective is to:

min
eA,eB

C(ē − eA) + C(ē − eB) + exp(ψ(ρx0 + eA + θ1)) − 1

+E
{
β

[
exp

(
ψ

(
ρ2x0 + ρeA + ρθ1 + eB + θ2

))] − 1
∣∣ θ1} . (59)
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As in “Optimal Emission Levels Under Uncertainty Type 2 and Exponential Damages”
section in “Appendix”, we can rewrite the social planner’s objective as:

min
eA,eB

C(ē − eA) + C(ē − eB) + exp(ψ(ρx0 + eA + θ1)) − 1

+β

[
exp

(
ψ

(
ρ2x0 + ρeA + ρθ1 + eB

) + ψ2σ 2
θ

2

)
− 1

]
. (60)

The first-order conditions for an interior solution to this minimization problem are:

−C ′ (ē − e∗
A

) + ψ exp
(
ψ

(
ρx0 + e∗

A + θ1
))

+βρψ exp

(
ψ

(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

) + ψ2σ 2
θ

2

)
= 0, (61)

−C ′ (ē − e∗
B

) + βψ exp

(
ψ

(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

) + ψ2σ 2
θ

2

)
= 0. (62)

In order to examine how e∗
A and e∗

B vary with β, we take the total derivative of the first-order
conditions with respect to β and rearrange to get:

[
C ′′ (ē − e∗

A

) + ψ2 exp(�1) + βρ2ψ2 exp(�2)
] de∗

A

dβ
+ βρψ2 exp(�2)

de∗
B

dβ
= −ψρ exp(�2), (63)

βρψ2 exp(�2)
de∗

A

dβ
+ [

C ′′ (ē − e∗
B

) + βψ2 exp(�2)
] de∗

B

dβ
= −ψ exp(�2), (64)

where

�1 = ψ
(
ρx0 + e∗

A + θ1
)
, (65)

�2 = ψ
(
ρ2x0 + ρe∗

A + ρθ1 + e∗
B

) + ψ2σ 2
θ

2
. (66)

Equations (63) and (64) can be rewritten in matrix form:
[
C ′′ (ē − e∗

A

) + ψ2 exp(�1) + βρ2ψ2 exp(�2) βρψ2 exp(�2)

βρψ2 exp(�2) C ′′ (ē − e∗
B

) + βψ2 exp(�2)

]

×
⎡
⎣

de∗
A

dβ

de∗
B

dβ

⎤
⎦ =

[−ψρ exp(�2)

−ψ exp(�2)

]
.

We define the following three matrices:

G =
[
C ′′ (ē − e∗

A

) + ψ2 exp(�1) + βρ2ψ2 exp(�2) βρψ2 exp(�2)

βρψ2 exp(�2) C ′′ (ē − e∗
B

) + βψ2 exp(�2)

]
,

G1 =
[−ψρ exp(�2) βρψ2 exp(�2)

−ψ exp(�2) C ′′ (ē − e∗
B

) + βψ2 exp(�2)

]
,

G2 =
[
C ′′ (ē − e∗

A

) + ψ2 exp(�1) + βρ2ψ2 exp(�2) −ψρ exp(�2)

βρψ2 exp(�2) −ψ exp(�2)

]
.
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Assuming that C ′′(·) > 0, we can determine whether the determinants of the above three
matrices are positive or negative:

det(G) = C ′′ (ē − e∗
A

)
C ′′ (ē − e∗

B

) + ψ2C ′′ (ē − e∗
B

)
exp(�1)

+βρ2φ2C ′′ (ē − e∗
B

)
exp(�2) + βψ2C ′′ (ē − e∗

A

)
exp(�2)

+βψ4 exp(�1) exp(�2) > 0, (67)

det(G1) = −ρψC ′′ (ē − e∗
B

)
exp(�2) < 0, (68)

det(G2) = −ψ exp(�2)[C ′′ (ē − e∗
A

) + ψ2 exp(�1)] < 0. (69)

By Cramer’s rule, it follows that:

de∗
A

dβ
= det(G1)

det(G)
< 0, (70)

de∗
B

dβ
= det(G2)

det(G)
< 0, (71)

A similar procedure yields expressions for the change in optimal emissions in response to
changes in other modeling parameters, x0, θ1, ρ, and σ 2

θ :

de∗
A

dx0
< 0,

de∗
B

dx0
< 0,

de∗
A

dθ1
< 0,

de∗
B

dθ1
< 0,

de∗
A

dρ
� 0,

de∗
B

dρ
� 0,

de∗
A

dσ 2
θ

< 0,
de∗

B

dσ 2
θ

< 0.

(72)
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